PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2) in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.
Czasopismo
Rocznik
Strony
77--100
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland
Bibliografia
  • 1.Antoine D., André J. M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10 (1), 56-69.
  • 2.Balch W. M., Evans R., Brown J., Feldman G., McClain C., Esaias W., 1992, The remote sensing of ocean primary productivity: Use of a new data compilation to test satellite algorithms, J. Geophys. Res., 97 (C2), 2279-2293, http://dx.doi.org/10.1029/91JC02843
  • 3.Behrenfeld M. J., Falkowski P. G., 1997, Photosynthetic rates derived from satellite- based chlorophyll concentration, Limnol. Oceanogr., 42 (1), 1-20.
  • 4.Behrenfeld M. J., O'Malley R. T., Siegel A. D., McClain C.-R., Jorge L., Sarmiento J., Feldman G. C., Milligan A. J., Falkowski P. G., Letelier R., Boss E. S., 2006, Climate-driven trends in contemporary ocean productivity, Nature, 444 (7120), 752-755, http://dx.doi.org/10.1038/nature05317
  • 5.Bianchi A., Bianucci L., Piola A., Ruiz-Pino D., Schloss I., Poisson A., Balestrini C., 2005, Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf, J. Geophys. Res., 110, C07003, http://dx.doi.org/10.1029/2004JC002488
  • 6.Boyd P. W., Trull T. W., 2007, Understanding the export of biogenic particles in oceanic waters: Is there consensus?, Prog. Oceanogr., 72 (4), 276-312, [ISSN 0079-6611], http://dx.doi.org/10.1016/j.pocean.2006.10.007
  • 7.Broekhuizen N., Heath M. R., Hay S. J., Gurney W. S. C., 1995, Modelling the dynamics of the North Sea's mesozooplankton, Neth. J. Sea Res., 33 (3/4), 381-406, http://dx.doi.org/10.1016/0077-7579(95)90054-3
  • 8.Brush M. J., Brawley J. W., Nixon S. W., Kremer J. N., 2002, Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative, Mar. Ecol.-Prog. Ser., 238, 31-45.
  • 9.Campbell J., Antoine D., Armstrong R., Arrigo K., Balch W., Barber R., Behrenfeld M., Bidigare R., Bishop J., Carr M.-E., Esaias W., Falkowski P., Hoepner N., Iverson R., Keifer D., Lohrenz S., Marra J., Morel A., Ryan J., Vedemikov V., Waters K., Yentsch C., Yoder J., 2002, Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance, Global Biogeochem. Cy., 16 (3), 74-75, http://dx.doi.org/10.1029/2001GB001444
  • 10.Carr M.-E., Friedrichs M. A., Schmeltz M., Aita M. N., Antoine D., Arrigo K. R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E. T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepner N., Ishizaka J., Kameda T., Le Quere C., Lohrenz S., Marra J., Melin F., Moore K., Morel A., Reddy T. E., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K., Yamanaka Y., 2006, A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53 (5-7), 741-770.
  • 11.Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.
  • 12.Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350, http://dx.doi.org/10.1016/j.rse.2003.10.012
  • 13.Doney S. C., Fabry V. J., Feely R. A., Kleypas J. A., 2009, Ocean acidification: the other CO2 problem, Ann. Rev. Mar. Sci., 1, 169-192, http://dx.doi.org/10.1146/annurev.marine.010908.163834
  • 14.Ebenhöh W., Kohlmeier C., Radford P. J., 1995, The benthic biological submodel in the European Regional Seas Ecosystem Model, Neth. J. Sea Res., 33(3/4), 423-452, http://dx.doi.org/10.1016/0077-7579(95)90056-X
  • 15.Eppley R. W., 1972, Temperature and phytoplankton growth in the sea, Fish. Bull. Nat. Ocean. Atmos. Adm., 70 (37), 1063-1085.
  • 16.Fitzwater S. E., Knauer G. A., Martin J. H., 1982, Metal contamination and its effect on primary production measurements, Limnol. Oceanogr., 27 (3), 544-551.
  • 17.Friedrichs M. A. M., Carr M.-E., Barber R. T., Scardi M., Antoine D., Armstrong R. A., Asanuma I., Behrenfeld M. J., Buitenhuis E. T., Chai F., Christian J. R., Ciotti A. M., Doney S. C., Dowell M., Dunne J., Gentili B., Gregg W., Hoepffner N., Ishizaka J., Kameda T., Lima I., Marra J., Mélin F., Moore J. K., Morel A., O'Malley R. T., O'Reilly J., Saba V. S., Schmelt M., Smyth T. J., Tjiputra J., Waters K., Westberry T. K., Winguth A., 2009, Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean, J. Marine Syst., 76 (1-2), 113-133, http://dx.doi.org/10.1016/j.jmarsys.2008.05.010
  • 18.Gregg W. W., 2008, Assimilation of SeaWiFS ocean chlorophyll data into a three- dimensional global ocean model, J. Marine. Syst., 69 (3-4), 205-225, http://dx.doi.org/10.1016/j.jmarsys.2006.02.015
  • 19.Hofmann E. E., Lascara C. M., 1998, Overview of interdisciplinary modeling for marine ecosystems, [in:] The sea, Vol. 10: The global coastal ocean: processes and methods, K. H. Brink & A. R. Robinson (eds.), John Wiley & Sons, New York, 507-540.
  • 20.JGOFS 1996, Protocols for the joint global ocean flux study (JGOFS) core measurements, Rep. No. 36, Intergov. Oceanogr. Commiss., Bergen, Norway, 170 pp., (available at ijgofs.whoi.edu/Publications/Report_Series/reports.html).
  • 21.JGOFS, 2002, Photosynthesis and Primary Productivity in Marine Ecosystems: Practical Aspects and Application of Techniques, Rep. No. 19, Intergov. Oceanogr. Commiss., Bergen, Norway, 89 pp., (available at ijgofs.whoi.edu/Publications/Report_eries/reports.html).
  • 22.Kameda T., Ishizaka J., 2005, Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, J. Oceanogr., 61 (4), 663-672.
  • 23.Kiefer D. A., Rensel J. E., O'Brien F. J., Fredriksson D. W., Irish J., 2011, An Ecosystem design for marine aquaculture site selection and operation, NOAA Marine Aquaculture Initiative Program Final Report. Award Number: NA08OAR4170859, by System Science Applications, Irvine CA in association with the United States Naval Academy and Woods Hole Oceanographic Institution., 181 pp.
  • 24.Larsen S. H., 2005, Solar variability, dimethyl sulphide, clouds, and climate, Glob. Biogeochem. Cy., 19, GB1014, http://dx.doi.org/10.1029/2004GB002333
  • 25.Longhurst A., Sathyendranath S., Platt T., Caverhill C., 1995, it An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245-1271.
  • 26.McClain C. R., 2009, A decade of satellite ocean color observations, Ann. Rev. Mar. Sci., 1, 19-42, http://dx.doi.org/10.1146/annurev.marine.010908.163650
  • 27.Moisander P., Steppe T. F., Hall N. S., Kuparinen J., Paerl H. W., 2003, Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms, Mar. Ecol.-Prog. Ser., 262, 81-95, http://dx.doi.org/doi:10.3354/meps262081
  • 28.Moore J. K., Doney S. C., Glover D. M., Fung I. Y., 2002a, Iron cycling and nutrient limitation patterns in surface waters of the world ocean, Deep Sea Res. Part II, 49 (1-3), 463-508, http://dx.doi.org/10.1016/S0967-0645(01)00109-6
  • 29.Moore J. K., Doney S. C., Kleypas J. C., Glover D. M., Fung I. Y., 2002b, An intermediate complexity marine ecosystem model for the global domain, Deep Sea Res. Part II, 49(1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4
  • 30.Moore J. K., Doney S. C., Lindsay K., 2004, Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18 (4), GB4028, http://dx.doi.org/10.1029/JC093iC09p10749
  • 31.Morel A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93 (C9), 10749-10768.
  • 32.Neumann T., 2000, Towards a 3D-ecosystem model of the Baltic Sea, J. Marine Syst., 25 (3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0
  • 33.Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy., 16, 1033, http://dx.doi.org/10.1029/2001GB001450
  • 34.Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1-2), 195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002
  • 35.Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst., 74 (1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003
  • 36.Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., 2005, Ecohydrodynamic model of the Baltic Sea. Part 1. Description of the ProDeMo model, Oceanologia, 47 (4), 477-516.
  • 37.O'Reilly J. E, Maritorena S., Mitchell B. G., Siegel D. A., Carder K. L., Garver S. A., Kahru M., McClain C. R., 1998, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103 (C11), 24937-24953.
  • 38.O'Reilly J. E., Maritorena S., Siegel D. A., O'Brien M. C., Toole D., Mitchell B. G., Kahru M., Chavez F. P., Strutton P., Cota G. F., Hooker S. B., McClain C. R., Carder K. L., Müller-Karger F., Harding L., Magnuson A., Phinney D., Moore G. F., Aiken J., Arrigo K.-R., Letelier R., Culver M., 2000, Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4, Ver. 4, NASA Tech. Memo., 2000-206892, Vol. 11, 9-27.
  • 39.Peterson B. J., 1980, Aquatic primary productivity and the 14CO2 method: A history of the productivity problem, Ann. Rev. Ecol. Syst., 11, 369-385, http://dx.doi.org/10.1029/98JC02160
  • 40.Richardson K., 1991, Comparison of 14 C primary production determinations made by different laboratories, Mar. Ecol.-Prog. Ser., 72, 189-201.
  • 41.Saba V. S., Friedrichs M. A. M., Antoine D., Armstrong R. A., Asanuma I., Aumont O., Behrenfeld M. J., Ciotti A. M., Dowell M., Hoepffner N., Hyde K. J. W., Ishizaka J., Kameda T., Marra J., Mélin F., Moore J. K., Morel A., O'Reilly J., Scardi M., Smith Jr. W. O., Smyth T. J., Tang S., Uitz J., Waters K., Westberry T. K., 2011, An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, 8, 489-503, http://dx.doi.org/doi:10.5194/bg-8-489-2011
  • 42.Steele J., 1962, Environmental control of photosynthesis in the sea, Limnol. Oceanogr., 7 (2), 137-150.
  • 43.Stigebrandt A., Wulff F., 1987, A model for the dynamics of nutrients and oxygen in the Baltic Proper, J. Mar. Res., 45 (3), 729-759, http://dx.doi.org/10.1357/002224087788326812
  • 44.Woźniak B., Ficek D., Ostrowska M., Ma jchrowski R., Dera J., 2007, Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527-542.
  • 45.Woźniak B., Krężel A., Darecki M., Woźniak S. B., Ma jchrowski R., Ostrowska, M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.
  • 46.Yeager S. G., Shields C. A., Large W. G., Hack J. J., 2006, The low-resolution CC SM3, J. Climate, 19 (11), 2545-2566, http://dx.doi.org/10.1175/JCLI3744.1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.