PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the parametrization of water optical properties on the modelled sea surface temperature in the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Treatment of light propagation in the water column requires further improvements in the biogeochemical models of the Baltic Sea. Regional models of the Baltic Sea usually assume a simple exponential vertical distribution of the total downward irradiance in the visible spectral range (PAR, photosynthetically available radiation). This is in spite of the fact that modelling studies for open ocean regions have stressed the importance of more detailed optical parameterization for the quality prediction of sea surface temperature and thermal structure of surface waters. In recent years extensive regional in situ bio-optical data sets have become available for the Baltic Sea, which can be used to develop a better understanding of the feedbacks between optics and other processes simulated by the models. In this paper we compare four optical parameterizations used in numerical ocean models and their effects on modelled SSTs. This has been achieved using a one-dimensional ocean model coupled with the bio-optical models. Our results indicate that the differences between the various modelled SSTs using three optical parameterization schemes designed specifically for the Baltic Sea can give differences of up to 4°C in the modelled SSTs. This result warrants further research into the subject.
Czasopismo
Rocznik
Strony
53--76
Opis fizyczny
Bibliogr. 48 poz. tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland, mstramska@iopan.gda.pl
Bibliografia
  • 1.Baker K. S., Smith R. C., 1982, Bio-optical classiffication and model of natural waters, Limnol. Oceanogr., 27 (3), 500-509.
  • 2.Bird R. E., 1984, A simple, solar spectral model for direct-normal and diffuse horizontal irradiance, Solar Energy, 32 (4), 461-471, http://dx.doi.org/10.1016/0038-092X(84)90260-3
  • 3.Bird R. E., Hulstrom R. L., Lewis L. J., 1983, Terrestrial solar spectral data sets, Sol. Energy, 30 (6), 563-573, http://dx.doi.org/10.1016/0038-092X(83)90068-3
  • 4.Belkin I., 2009, Rapid warming of large marine ecosystems, Prog. Oceanogr., 81, 207-213.
  • 5.Blumberg A. F., Mellor G. L., 1983, Diagnostic and prognostic numerical circulation studies of the South California Bight, J. Geophys. Res., 88 (8), 4579-4592, http://dx.doi.org/10.1029/JC088iC08p04579
  • 6.Bradtke K., Herman A., Urbański J. A., 2010, Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia, 52 (3), 345-362, http://dx.doi.org/10.5697/oc.52-3.345
  • 7.Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S. B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.
  • 8.Fasham M. J. R., Ducklow H. W., McKelvie S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48 (3), 591-639.
  • 9.Feldman G. C., McClain C. R., 2012, Ocean Color Web. SeaWiFS and MODISA Reprocessing 2010, N. Kuring & S. W. Bailey (eds.), NASA Goddard Space Flight Center, http://oceancolor.gsfc.nasa.gov/, (access date January 2012).
  • 10.HELCOM 2009, Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Balt. Sea Environ. Proc. No. 115B, 148 pp.
  • 11.Kahru M., Leppänen J. M., Rud O., 1993, Cyanobacterial blooms cause heating of the sea surface, Mar. Ecol.-Prog. Ser., 101, 1-7.
  • 12.Kirk J. T. O., 2011, Light and photosynthesis in aquatic ecosystems, Cambridge Univ. Press, 3rd edn., Cambridge, 662 pp.
  • 13.Kishino M., Okami N., Takahashi M., Ichimura S. E., 1986, Light utilization effciency and quantum yield of phytoplankton in a thermally stratified sea, Limnol. Oceanogr., 31 (3), 557-566.
  • 14.Lee Z.-P., Darecki M., Carder K. L., Davis C. O., Stramski D., Rhea W. J., 2005, Diffuse attenuation coeffcient of downwelling irradiance: An evaluation of remote sensing methods, J. Geophys. Res., 110, C02017, http://dx.doi.org/10.1029/2004JC002573
  • 15.Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer, Berlin, [ISBN: 978-3-540-79702-9], 378 pp.
  • 16.Lewis M. R., Carr M. E., Feldman G. C., Esaias W., McClain C., 1990, Inffluence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean, Nature, 347 (6293), 543-545, http://dx.doi.org/10.1038/347543a0
  • 17.Lewis M. R., Cullen J. J., Platt T., 1983, Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in the chlorophyll profile, J. Geophys. Res., 88 (C4), 2565-2570, http://dx.doi.org/10.1029/JC088iC04p02565
  • 18.Löptien U., Meier H. E. M., 2011, The influence of increasing water turbidity on the sea surface temperature in the Baltic Sea: A model sensitivity study, J. Marine Syst., 88 (2), 323-331.
  • 19.McClain C. R., Feldman G. C., Hooker S. B., 2004, An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep Sea Res. Pt. II, 51 (1-3), 5-42, http://dx.doi.org/10.1016/j.dsr2.2003.11.001
  • 20.Mellor G. L., 2004, Users guide for a three-dimensional, primitive equation numerical ocean model, available on the Princeton Ocean Model (POM) website, rev.2004, http://www.aos.princetion.edu/WWPUBLIC/htdocs.pom/
  • 21.Mellor G. L., Durbin P. A., 1975, The structure and dynamics of the ocean surface mixed layer, J. Phys. Oceanogr., 5 (4), 718-728, http://dx.doi.org/10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2
  • 22.Mellor G. L., Yamada T., 1974, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31 (7), 1791-1806, http://dx.doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  • 23.Mellor G. L., Yamada T., 1982, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20 (4), 851-857, http://dx.doi.org/10.1029/RG020i004p00851
  • 24.Mobley C. D., 1994, Light and water: Radiative transfer in natural waters, Acad. Press, New York, 592 pp.
  • 25.Moore J. K., Doney S. C., Glover D. M., Fung I. Y., 2002a, Iron cycling and nutrient limitation patterns in surface waters of the world ocean, Deep Sea Res. Part II, 49 (1-3), 463-508, http://dx.doi.org/10.1016/S0967-0645(01)00109-6
  • 26.Moore J. K., Doney S. C., Kleypas J. C., Glover D. M., Fung I. Y., 2002b, An intermediate complexity marine ecosystem model for the global domain, Deep Sea Res. Part II, 49 (1-3), 403-462, http://dx.doi.org/10.1016/S0967-0645(01)00108-4
  • 27.Moore J. K., Doney S. C., Lindsay K., 2004, Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18 (4), GB4028, http://dx.doi.org/10.1029/JC093iC09p10749
  • 28.Morel A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93 (C9), 10749-10768.
  • 29.Neumann T., 2000, Towards a 3D-ecosystem model of the Baltic Sea, J. Marine Syst., 25 (3-4), 405-419, http://dx.doi.org/10.1016/S0924-7963(00)00030-0
  • 30.Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy., 16, 1033, http://dx.doi.org/10.1029/2001GB001450
  • 31.Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1-2), 195-206, http://dx.doi.org/10.1016/j.jmarsys.2004.10.002
  • 32.Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst.,74 (1-2), 592-602, http://dx.doi.org/10.1016/j.jmarsys.2008.05.003
  • 33.Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., 2005, Ecohydrodynamic model of the Baltic Sea. Part 1. Description of the ProDeMo model, Oceanologia, 47 (4), 477-516.
  • 34.Palmer K. F., Williams D., 1974, Optical properties of water in the near infrared, J. Opt. Soc. Am., 64 (8), 1107-l110, http://dx.doi.org/10.1364/JOSA.64.001107
  • 35.Payne R. E., 1972, Albedo of the sea surface, J. Atmos. Sci., 29 (5), 959-970, http://dx.doi.org/10.1175/1520-0469(1972)029<0959:AOTSS<2.0.CO;2
  • 36.Pierson D., Kratzer S., Strömbeck N., Hakånsson B., 2008, Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic Sea, Remote Sens. Environ., 112 (3), 668-680, http://dx.doi.org/10.1016/j.rse.2007.06.009
  • 37.Savchuk P. O., Wulff F., 1999, Modeling regional and large-scale response of Baltic Sea ecosystems to nutrient load reductions, Hydrobiologia, 393 (1), 35-43.
  • 38.Savchuk P. O., Wulff F., 2007, Modeling the Baltic Sea eutrophication in a decision support system, AMBIO 36 (2), 141-148, http://dx.doi.org/10.1579/0044-7447(2007)36[141:MTBSEI]2.0.CO;2
  • 39.Sathyendranath S., Gouveia A. D., Shetye S. R., Ravindran P., Platt T., 1991, Biological control of surface temperature in the Arabian Sea, Nature, 349 (6304), 54-56, http://dx.doi.org/10.1038/349054a0
  • 40.Sathyendranath S., Platt T., 1988, The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing, J. Geophys. Res., 93 (C8), 9270-9280, http://dx.doi.org/10.1029/JC093iC08p09270
  • 41.Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990-2004, Oceanologia, 48 (S), 119-131.
  • 42.Simonot J.-Y., Dollinger E., Le Treut H., 1988, Thermodynamic-biological-optical coupling in the oceanic mixed layer, J. Geophys. Res., 93 (C7), 8193-8202, http://dx.doi.org/10.1029/JC093iC07p08193
  • 43.Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters (200-800 nm), Appl. Opt., 20 (2), 177-184, http://dx.doi.org/10.1364/AO.20.000177
  • 44.Smith R. C., Baker K. S., 1986, Analysis of ocean optical data, II. Proc. Sot. Photo-Opt. Eng., 637, 95-107.
  • 45.Stramska M., Dickey T., 1993, Phytoplankton bloom and the vertical thermal structure of the upper ocean, J. Mar. Res., 51 (4), 819-842.
  • 46.Woods J. D., Barkmann W., 1986, The response of the upper ocean to solar heating. I. The mixed layer, Q. J. Roy. Meteor. Soc., 112 (471), 1-27, http://dx.doi.org/10.1002/qj.49711247102
  • 47.Woźniak B., Krężel A., Darecki M., Woźniak S. B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.
  • 48.Zaneveld J. R., Kitchen J. C., Pak H., 1981, The influence of optical water type on the heating rate of a constant depth mixed layer, J. Geophys. Res., 86 (C7), 6426-6428, http://dx.doi.org/10.1029/JC086iC07p06426
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.