PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hazardous Compounds in Urban Pm in the Central Part of Upper Silesia (Poland) in Winter

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Niebezpieczne związki w miejskim pyle zawieszonym w centralnej części Górnego Śląska w zimie
Języki publikacji
EN
Abstrakty
EN
Thirteen fractions of ambient dust were investigated in Zabrze, a typical urban area in the central part of Upper Silesia (Poland), during a heating season. Fifteen PAH and Cr, Mn, Co, Ni, As, Se, Cd, Pb contents of each fraction were determined. The dust was sampled with use of a cascade impactor and chemically analyzed with an energy dispersive X-ray fl uorescence spectrometer (PANalytical Epsilon 5) and a gas chromatograph with a fl ame ionisation detector (Perkin Elmer Clarus 500). The concentrations of PM1 and the PM1-related PAH and elements were much higher than the ones of the coarse dust (PM2.5-10) and the substances contained in it. The concentrations of total PAH and carcinogenic PAH were very high (the concentrations of PM1-, PM2.5-, and PM10-related BaP were 16.08, 19.19, 19.32 ng m-3, respectively). The municipal emission, resulted mainly from hard coal combustion processes, appeared to be the main factor affecting the air quality in Zabrze in winter.
PL
Próbki trzynastu frakcji pyłu zawieszonego były pobierane w Zabrzu w okresie grzewczym (centralna część Górnego Śląska, Polska). Punkt poboru jest charakterystyczny dla obszaru miejskiego. Zbadano zawartość 15 WWA oraz Cr, Mn, Co, Ni, As, Se, Cd, Pb w każdej frakcji pyłu. Do poboru pyłu zastosowano impaktor kaskadowy, a do analizy chemicznej – spektrometr fl uorescencji rentgenowskiej z dyspersją energii (PANalytical Epsilon 5) oraz chromatograf gazowy z detektorem płomieniowo-jonizacyjnym (Perkin Elmer Clarus 500). Zarówno stężenia pyłu PM1 jak i stężenia związanych z nim WWA i pierwiastków były znacznie wyższe niż stężenia pyłu grubego (PM2.5-10) i związanych z nim substancji. Stężenia sumy WWA, a w szczególności kancerogennych związków tej grupy były bardzo wysokie (np. stężenia dla BaP związanego z PM1- i PM2.5- oraz PM10- wynosiły odpowiednio: 16.08, 19.19, 19.32 ng m-3). Na podstawie uzyskanych wyników badań dla ww. zanieczyszczeń stwierdzono, że za stan jakości powietrza w Zabrzu, w zimie, odpowiedzialna jest emisja komunalna – stacjonarne źródła spalania, głównie spalanie węgla.
Rocznik
Strony
53--65
Opis fizyczny
Bibliogr. 68 poz., tab., wykr.
Twórcy
autor
  • Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowska-Curie 34, 41-819 Zabrze, Poland, wioletta@ipis.zabrze.pl
Bibliografia
  • [1] Burnett, R.T., Brook, J., Dann, T., Delocla, C., Philips, O., Cakmak, S., Vincent, R., Goldberg, M.S., & Krewski¸ D. (2000). Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities, Inhalation Toxicology, 12, 15-39.
  • [2] Canepari, S., Perrino, C., Olivieri, F., & Astolfi , M.L. (2008). Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis, Atmospheric Environment, 42 (35), 8161-8175.
  • [3] De Kok, J.G., Hogervorst, J.J., Briede, M.H., van Herwijnen, L.M., Maas, E.J., Moonen, H.A., & Driece, Kleinjansź, J.C. (2005). Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter, Environmental and Molecular Mutagenesis, 46 (2), 71-80.
  • [4] Di Filippo, P., Riccardi, C., Pomata, D., Gariazzo, C., & Buiarelli, F. (2010). Seasonal abundance of particle- -phase organic pollutants in an urban/industrial atmosphere, Water, Air, and Soil Pollution, 211 (1-4), 231-250.
  • [5] Dreher, K.L. (2000). Particulate matter physicochemistry and toxicology: in search of causality - a critical perspective, Inhalation Toxicology, 12, 45-57.
  • [6] EC: Council Directive 2004/107/EC relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (2004).
  • [7] EC: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (2008).
  • [8] El Haddad, I., Marchand, N., Dron, J., Temime-Roussel, B., Quivet, E., Wortham, H., Jaffrezo, J.L., Baduel, C., Viosin, D., Besombes, J.L., & Gille, G. (2009). Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France, Atmospheric Environment, 43 (39), 6190-6198.
  • [9] Evagelopoulos, V., Albanis, T.A., Asvesta, A., & Zoras, S. (2010). Polycyclic aromatic hydrocarbons (PAHs) in fine and coarse particles, Global Nest Journal, 12 (1), 63-70.
  • [10] Guo, H.L., Lu, C.G., Yu, Q., & Chen, L.M. (2004). Pollution characteristics of polynuclear aromatic hydrocarbons on airborne particulate in Shanghai, Journal of Fudan University (Natural Science), 43, 1107.
  • [11] Harrison, R.M., & Yin, J. (2000). Particulate matter in the atmosphere: which particle properties are important for its effects on health? Atmospheric Environment, 249 (1-3), 85-101.
  • [12] Hsiao, W.L., Mo, Z.Y., Fang, M., Shi, X.M., & Wang, F. (2000). Cytotoxicity of PM(2.5) and PM(2.5-10) ambient air pollutants assessed by the MTT and the comet assays, Mutation Research, 471, 45-55.
  • [13] http://www.lex.pl/du-akt/-/akt/dz-u-10-16-87.
  • [14] Jasan, R.C., Plá, R.R., Invernizzi, R., & Dos Santos, M. (2009). Characterization of atmospheric aerosol in Buenos Aires, Argentina, Journal of Radioanalytical and Nuclear Chemistry, 281 (1), 101-105.
  • [15] Juda-Rezler, K., Reizer, M., & Oudinet, J.-P. (2011). Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006, Atmospheric Environment, 45 (36), 6557-6566.
  • [16] Kavouras, I.G., Lawrence, J., Koutrakis, P., Stephanou, E.G., & Oyola, P. (1999). Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: Source reconciliation and evaluation of sampling artifacts, Atmospheric Environment, 33 (30), 4977-4986.
  • [17] Kendall, M., Pala, K., Ucakli, S., Gucer, S. (2011). Airborne particulate matter (PM2.5 and PM10) and associated metals in urban Turkey, Air Quality, Atmosphere and Health, 4 (3), 235-242.
  • [18] Khalili, N.R., Scheff, P.A., & Holsen, T.M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions, Atmospheric Environment, 29 (4), 533-542.
  • [19] Klejnowski, K., Pastuszka J.S., Rogula-Kozłowska, W., Talik E., & Krasa, A. (2012). Mass Size Distribution and Chemical Composition of the Surface Layer of Summer and Winter Airborne Particles in Zabrze, Poland, Bulletin of Environmental Contamination and Toxicology, 88 (2), 255-259.
  • [20] Kliucininkas L., Martuzevicius, D., Krugly, E., Prasauskas, T., Kauneliene, V., Molnar, P., & Strandberg, B. (2011): Indoor and outdoor concentrations of fine particles, particle-bound PAHs and volatile organic compounds in Kaunas, Lithuania, Journal of Environmental Monitoring, 13 (1), 182-191.
  • [21] Kong, S., Ding, X., Bai, Z., Han, B., Chen, L.,Shi, J., & Li, Z. (2010). A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China Journal of Hazardous Materials, 183 (1-3), 70-80.
  • [22] Kozielska, B., Rogula-Kozłowska, W., & Pastuszka, J.S. (2009). Effect of road traffic concentration of PM2.5, PM10 and PAHs in zones of high and low municipal emission, Polska Inżynieria Środowiska pięć lat po wstąpieniu do Unii Europejskiej, Monografie Komitetu Inżynierii Środowiska PAN, 58 (1), 129-137, Lublin, ISBN 978-83-89293-81-7 (in Polish).
  • [23] Krewski, D., Burnett, R., Goldberg, M., Hoover, B.K., Siemiatycki, J., Jerrett, M.,Abrahamowicz, M., & White, W. (2003). Overview of the reanalysis of the Harvard six cities study and American Cancer Society study of particulate air pollution and mortality, Journal of Toxicology and Environmental Health. Part A, 66 (16-19), 1507-1551.
  • [24] Ladji, R., Yassaa, N., Balducci, C., Cecinato, A., & Meklati, B.Y. (2009). Distribution of the solventextractable organic compounds in fine (PM1) and coarse (PM1-10) particles in urban, industrial and forest atmospheres of Northern Algeria, Science of the Total Environment, 408 (2), 415-424.
  • [25] Lee, B.-K., & Hieu, N.T. (2011). Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea, Aerosol and Air Quality Research, 11 (6), 679-688.
  • [26] Li, C.K., Kamens, R.M. (1993). The use of polycyclic aromatic hydrocarbons as sources signatures in receptor modeling, Atmospheric Environment, 27A, 523-532.
  • [27] Li, Z., Porter, E.N., Sjödin, A., Needham, L.L., Lee, S., Russell, A.G., & Mulholland, J.A. (2009). Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta-Seasonal variations at urban, suburban, and rural ambient air monitoring sites, Atmospheric Environment, 43 (27), 4187-4193.
  • [28] Liu, D., Gao, S., & An, X. (2008). Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing, Advances in Atmospheric Sciences, 25 (2), 297-305.
  • [29] Makkonen, U., Hellén, H., Anttila, P., & Ferm, M. (2010). Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006, Science of the Total Environment, 408 (3), 644-651.
  • [30] Masclet, P., Bresson, M.A., & Mouvier, G. (1987). Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions, Fuel, 66 (4), 556-562.
  • [31] Massolo, L., Muller, A., Tueros, M., Rehwagen, M., Franck, U., Ronco, A., & Herbarth, O. (2002). Assessment of Mutagenicity and Toxicity of Different-Size Fractions of Air Particulates from La Plata, Argentina, and Leipzig, Germany, Environmental Toxicology, 17 (3), 219-231.
  • [32] Mohanraj, R., Solaraj, G., & Dhanakumar S. (2011): PM2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India, Bulletin of Environmental Contamination and Toxicology, 87 (3), 330-335.
  • [33] Mooibroek, D., Schaap, M., Weijers, E.P., & Hoogerbrugge, R. (2011). Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands, Atmospheric Environment, 45 (25), 4180-4191.
  • [34] Na, K., & Cocker, D.R. (2009). Characterization and source identification of trace elements in PM2.5 from Mira Loma, Southern California, Atmospheric Research, 93 (4), 793-800.
  • [35] Negral, L., Moreno-Grau, S., Moreno, J., Querol, X, Viana, M.M., & Alastuey, A. (2008): Natural and anthropogenic contributions to PM10 and PM2.5 in an urban area in the western Mediterranean coast, Water, Air, and Soil Pollution, 192 (1-4), 227-238.
  • [36] Nisbet, I.C.T., & LaGoy, P.K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, 16 (3), 290-300.
  • [37] Norramit, P., Cheevaporn, V., Itoh, N., & Tanaka, K. (2005). Characterization and carcinogenic risk assessment of polycyclic aromatic hydrocarbons in the respirable fraction of airborne particles in the Bangkok Metropolitan area, Journal of Health Science, 51 (4), 437-446.
  • [38] Pakkanen, T.A., Kerminen, V.-M., Loukkola, K., Hillamo, R.E., Aarnio, P., Koskentalo, T., & Maenhaut, W. (2003). Size distributions of mass and chemical components in street-level and rooftop PM1 particles in Helsinki, Atmospheric Environment, 37 (12), 1673-1690.
  • [39] Park, K., Park, J.Y., Kwak, J.-H., Cho, G.N., & Kim, J.-S. (2008). Seasonal and diurnal variations of ultrafine particle concentration in urban Gwangju, Korea: Observation of ultrafine particle events, Atmospheric Environment, 42 (4), 788-799.
  • [40] Pastuszka, J.S., Wawroś, A., Talik, E., & Paw, U.K.T. (2003). Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland, Science of the Total Environment, 309 (1-3), 237-251.
  • [41] Pastuszka, J.S., Rogula-Kozłowska, W., & Zajusz-Zubek, E. (2010). Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes, Environmental Monitoring and Assessment, 168 (1-4), 613-627.
  • [42] Pérez, N., Pey, J., Querol, X., Alastuey, A., López, J.M., & Viana, M. (2008). Partitioning of major and trace components in PM10-PM2.5-PM1 at an urban site in Southern Europe, Atmospheric Environment, 42 (8), 1677-1691.
  • [43] Pietrogrande, M.C., Abbaszade, G., Schnelle-Kreis, J., Bacco, D., Mercuriali, M., & Zimmermann, R. (2011). Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany, Environmental Pollution, 159 (7), 1861-1868.
  • [44] Pope, C.A., Burnett, R.T., Thun, M.J., Cale, E.E., Krewski, D., Ito, K., & Thurston, G.D. (2002). Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution, Journal of American Medical Association, 287 (9), 1132-1141.
  • [45] Pope, C.A., & Dockery, D.W. (2006). Health effects of fine particulate air pollution: lines that connect, Journal of the Air & Waste Management Association, 56 (6), 709-742.
  • [46] Rajšić, S., Mijić, Z., Tasić, M., Radenković, M., & Joksić, J. (2008). Evaluation of the levels and sources of trace elements in urban particulate matter, Environmental Chemistry Letters, 6 (2), 95-100.
  • [47] Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., & Simoneit, B.R.T. (1993). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: Roads as sources and sinks, Environmental Science and Technology, 27 (9), 1892-1904.
  • [48] Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., & Simoneit, B.R.T. (1993). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks, Environmental Science and Technology, 27 (4), 636-651.
  • [49] Rogula-Kozłowska, W., Pastuszka, J.S., & Talik, E. (2008). Influence of vehicular traffic on concentration and particle surface composition of PM10 and PM2.5 in Zabrze, Poland, Polish Journal of Environmental Studies, 17 (4), 539-548.
  • [50] Rogula-Kozłowska, W., Klejnowski, K., Krasa, A., & Szopa, S. Concentration and elemental composition of atmospheric fine particles in Silesia Province, Poland, [in] Environmental Engineering III, Pawłowski, Dudzińska & Pawłowski (eds.), Taylor & Francis Group, London 2010, 75-81.
  • [51] Rogula-Kozłowska, W., Błaszczak, B., & Klejnowski, K. (2011). Concentrations of PM2.5, PM2.5-10 and PM-related elements at two heights in an urban background area in Zabrze (Poland), Archives of Environmental Protection, 37 (2), 31-47.
  • [52] Saarnio, K., Sillanpää, M., Hillamo, R., Sandell, E., Pennanen, A.S., & Salonen, R.O. (2008). Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe, Atmospheric Environment, 42 (40), 9087-9097.
  • [53] Saldiva, P.H.N., Clarke, R.W., Coull, B.A., Stearns, R.C., Lawrence, J., Murthy, G.G.K., Diaz, E., Koutrakis, P., Suh, H., Tsuda, A., & Godleski, J.J. (2002): Lung inflammation induced by concentrated ambient air particles is related to particle composition, American Journal of Respiratory and Critical Care Medicine, 165 (12), 1610-1617.
  • [54] Sienra, M. del.R., Rosazza, N.G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter, Atmospheric Research, 75 (4), 267-281).
  • [55] Singh, D.P., Gadi, R., & Mandal, T.K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India, Atmospheric Environment, in press.
  • [56] Swaine, D.J. (2000). Why trace elements are important, Fuel Processing Technology, 65-66, 21-33.
  • [57] Šišović, A., Vadjić, Z., Šega, K., Bešlić, I., & Vadjić, V. (2005). Comparison between PAH mass concentrations measured in PM10 and PM2.5 particle fractions, Bulletin of Environmental Contamination and Toxicology, 75 (1), 121-126.
  • [58] Takeshi, O., Takashi, A. (2004). Spatial distributions and profiles of atmospheric polycyclic aromatic hydrocarbons in two industrial cities in Japan, Environmental Sciences and Technology, 38 (1), 49-55.
  • [59] Tang, N., Hattori, T., Taga, R., Igarashi, K., Yang, X., Tamura, K., Kakimoto, H., Mishukov, V.F., Toriba, A., Kizu, R., & Hayakawa, K. (2005): Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries, Atmospheric Environment, 39 (32), 5817-5826.
  • [60] Tong, Y., Ni, X., Zhang, Y., Chen, F., Zhang, G., & Ye, S. (2002). Study of the toxicological mechanism of acidified aerosols, Biological Trace Element Research, 85, 149-156.
  • [61] US EPA.: Compendium of Methods for the Determination of Inorganic Compounds In Ambient Air. Compendium Method IO-3.3: Determination of metals in ambient particulate matter using X-Ray Fluorescence (XRF) Spectroscopy, Cincinnati, June 1999.
  • [62] Vasilakos, C., Pateraki, S. Veros, D. Maggos, T., Michopoulos, J. Saraga, D., & Helmis, C.G. (2007): Temporal determination of heavy metals in PM2.5 aerosols in a suburban site of Athens, Greece, Journal of Atmospheric Chemistry, 57 (1), 1-17.
  • [63] Vecchi, R., Marcazzan, G., Valli, G., Ceriani, M., & Antoniazzi, C. (2004). The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy), Atmospheric Environment, 38 (27), 4437-4446.
  • [64] Vercauteren, J., Matheeussen, C., Wauters, E., Roekens, E., van Grieken, R., Krata, A., Makarovska, Y., Maenhaut, W. ,Chi, X., & Geypens, B. (2011). Chemkar PM10: An extensive look at the local differences in chemical composition of PM10 in Flanders, Belgium, Atmospheric Environment, 45 (1), 108-116.
  • [65] Viana, M., Kuhlbusch, T.A.J., Querol, X. ,Alastuey, A., Harrison, R.M., Hopke, P.K., Winiwarter, W., Vallius, S., Szidat, A.S.H., Prévôt, C., Hueglin, H., Bloemen, P., Wåhlin, R., Vecchi, A.I., Miranda, A., Kasper-Giebl, W., Maenhaut, W., & Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results, Journal of Aerosol Science, 39 (10), 827-849.
  • [66] Wedepohl, K.H. (1995). The composition of the continental crust, Geochimica et Cosmochimica Acta, 59 (7), 1217-1232.
  • [67] Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition, Organic Geochemistry, 33 (4), 489-515.
  • [68] Zencak, Z., Klanova, J., Holoubek, I., & Gustafsson, Ö. (2007). Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis, Environmental Science and Technology, 41 (11), 3850-3855.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.