PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simultaneous Determination of Selected Insecticides and Atrazine in Soil by MAE-GC-ECD

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Równoczesne oznaczanie wybranych insektycydów i atrazyny w glebie techniką MAE-GC-ECD
Języki publikacji
EN
Abstrakty
EN
The procedure for simultaneous extraction from soil and determination by means of GC–ECD insecticides: aldrin, dieldrin, endrin and herbicide: atrazine was worked out. The proposed GC–ECD technique provides limits of detection in range 12 ěg/mL – 18 ěg/mL and 2 ěg/mL, for insecticides and atrazine, respectively. Two different types of extraction: microwave assisted extraction (MAE) and ultrasound assisted extraction (UAE) with different solvents were tested to choose the procedure that provides the highest recoveries of analytes and low detection limits, typical for trace analysis (100 ppm or 100 mg/g, IUPAC). On the basis of recoveries and precision both extraction methods were compared. The insecticides recovery from soil samples obtained by UAE were in range 40–85%, coefficient of variation (CV): 1.3–5.0%, whereas for atrazine recovery was below 15% (CV: 8–18%). The most efficient and precise extraction procedure turned out to be MAE with n-hexane: acetone. The recoveries were in range 70–85% for insecticides and 84% for atrazine, CV: 0.4–2.2% and 5.3% for insecticides and atrazine, respectively. The presented MAE–GC–ECD procedure enables extraction and determination of aldrin, dieldrin, endrin and atrazine in soil samples with high recoveries, precision and limits of detections in range 6 ng/g – 8 ng/g in the case of insecticides and 1.5 ng/g for atrazine. The MAE–GC–ECD procedure was applied for the above mentioned pesticides determination in environmental samples. Soils were collected in agricultural as well as rural areas in Poland. In all cases atrazine was determined in concentration range: 0.0187 mg/g – 0.1107 mg/g. Aldrin and dieldrin was detected in soil samples from two locations.
PL
Opracowano procedurę MAE–GC–ECD umożliwiającą równoczesną ekstrakcję i oznaczanie insektycydów: aldryny, dieldryny i endryny oraz herbicydu: atrazyny z gleb. Zastosowana metoda GC–ECD charakteryzuje się granicą wykrywalności w zakresie 12–18 žg/ml dla insektycydów oraz 2 žg/m for dla atrazyny. W celu opracowania procedury analitycznej o wysokim odzysku analitów i granicy oznaczalności typowej dla analizy śladowej (100 ppm lub 100 mg/g wg. IUPAC) przeprowadzono badania z zastosowaniem ekstrakcji rozpuszczalnikowej wspomaganej ultradźwiękami (UAE) oraz mikrofalami (MAE) dla różnych rozpuszczalników. Dokonano porównania precyzji oraz odzysków analitów dla obu technik ekstrakcyjnych. Wydzielanie insektycydów z próbek gleb na drodze ekstrakcji rozpuszczalnikowej wspomaganej ultradźwiękami przeprowadzono z odzyskiem 40–85% (CV: 1,3–5,0%), natomiast atrazyny 15% (CV: 8–18%). Najwyższą precyzją i odzyskiem charakteryzowała się metoda MAE z zastosowaniem mieszaniny n-heksan–aceton. Odzyski mieściły się w tym przypadku w zakresie 70–85% (CV: 0,4–2,2%) dla insektycydów oraz 84% (CV: 5,3%) dla atrazyny. Opisana procedura MAE–GC–ECD umożliwia ekstrakcję i oznaczenie aldryny, dieldryny, endryny oraz atrazyny w próbkach gleb. Charakteryzuje się wysokimi odzyskami, precyzją i granicami wykrywalności mieszczącymi się w granicach 6–8 ng/g, w przypadku insektycydów oraz 1,5 ng/g dla atrazyny. Metodyka MAE–GC–ECD została zastosowana do oznaczanie wymienionych pestycydów w próbkach gleb pobranych z terenów rolniczych oraz przemysłowych. We wszystkich próbkach gleb oznaczono atrazynę, której stężenie mieściło się w granicach od 0,0187 mg/g do 0,1107 mg/g w zależności od pochodzenie próbki. Aldryna i dieldryna została wykryta w dwóch próbkach na poziomie poniżej granicy oznaczalności.
Rocznik
Strony
27--40
Opis fizyczny
Bibliogr. 53 poz., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Accinelli, C., Dinelli, G., Vicardi, A., Catizone, P. (2001). Atrazine and metolachlor degradation in subsoils, Biol. Fertil. Soils, 33, 495-500.
  • [2] Baran, S., Oleszczuk, P. (2003). Determination of s-triazine herbicides in soils of different organic matter content, Analytical Chemistry, 48, 817-827.
  • [3] Baranowska, I., Barchanska, H., Pacak, E. (2006). Procedures of trophic chain samples preparation for determination of triazines by HPLC and metals by ICP-AES methods, Environmental. Pollution, 143, 206-211.
  • [4] Baranowska, I., Barchanska, H., Pyrsz, A. (2005). Distribution of pesticides and heavy metals in trophic chain, Chemosphere, 60, 1590-1599.
  • [5] Barchanska, H. (2007). Investigation of atrazine, simazine and selected metals the determination in trophic chains. Doctoral thesis, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland.
  • [6] Barchańska, H., & Baranowska, I. (2009). Procedures for analysis of atrazine and simazine in environmental matrices. Reviews of Environmental Contamination and Toxicology, 200, 53-84.
  • [7] Biziuk, M. (2001). Pestycydy - występowanie, oznaczanie i unieszkodliwianie, WNT, Warsaw 2001.
  • [8] Cabrera, A., Cox, L., Koskinen, W.C., & Sadowsky, M.J. (2008). Availability of triazine herbicides in aged soils amended with olive oil mill waste, Journal of Agriculture and Food Chemistry, 56, 4112-4119.
  • [9] Chapuis, F., Pichon, V., Lanza, F., & Sellergren, B. (2004). Retention mechanism of analytes in the solidphase extraction process using molecularly imprinted polymers: Application to the extraction of triazines from complex matrices, Journal of Chromatography B, 804, 93-101.
  • [10] Concha-Graña, E., Barriada-Pereira, M., Turnes-Carou, M.I., Muniategui-Lorenzo, S., López-Mahίa, P., & Rodrίguez, D.P. (2003). Microwave extraction of organochlorine pesticides from soils, Analytical and Bioanalytical Chemistry, 375, 1225-1228.
  • [11] Dean, J.R., Wade, G., & Barnabas, I.J. (1996). Determination of triazine herbicides in environmental samples, Journal of Chromatography A, 733, 295-335.
  • [12] Directive 2000/60/EC Off. J. Eur. Commun., October 23, L327, 2000.
  • [13] Fenik, J., Tankiewicz, M., & Biziuk, M. (2010). Występowanie i oznaczanie pestycydów w owocach i warzywach, Ekologia i Technika, 4, 186-197.
  • [14] Feuntes, E., Baez, M.E., & Reyes, D. (2006). Microwave - assisted extraction through an aqueus medium and simultaneous cleanup by partition on hexane for determining pesticides in agricultural soils by gas chromatography: A critical study. Analytical Chimica Acta, 578, 122-120.
  • [15] Funari, E., Barbieri, L., Bottoni, P., Del Carlo, G., Forti, S., Guliano, G., & Marinelli, A. (1998). Comparison of the leaching properties of alachlor, metolachlor, triazines and some of their metabolites in an experimental field, Chemosphere, 36, 1759-1773.
  • [16] Gong, A., & Ye, C. (1998). Analysis of trace atrazine and simazine in environmental samples by liquid chromatography - fluorescence detection with pre-column derivatization reaction, Journal of Chromatography A, 827, 57-63.
  • [17] Hang, S., Mercuri, P., Díaz-Zorita, M., Havrylenko, S., & Barriuso E. (2011). Satellite images as a tool to identify accelerated atrazine mineralization in soils, Crop Protection, 30, 663-670.
  • [18] Herbert, P., Morais, S., Paiga, P., Alves, A., & Santos L. (2006). Development and validation of a novel method for the analysis of chlorinated pesticides in soils using microwave-assisted extraction-headspace solid phase microextraction and gas chromatography-tandem mass spectrometry, Analytical and Bioanalytical Chemistry, 384, 810-816.
  • [19] Hu, X., Hu, Z., Li, G. (2007). Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high- -performance liquid chromatography, Journal of Chromatography A, 1146, 1-9.
  • [20] Jablonowski, N.D., Koppchen, S., Hofmann, D., Schaffer, A., & Buraue, P. (2009). Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years, Environmental Pollution, 157, 2126-2131.
  • [21] Janicki, B., Borejszo, Z., Smoczyński, S., Sumaczyński, P., & Olszewska, K. (2007). Zawartość insektycydów chloroorganicznych w tkance tłuszczowej i wątrobie bażantów wolno żyjących, Medycyna Weterynaryjna, 63, 481-483.
  • [22] Kookana, R., Holz, G., Barnes, C., Bubb, K., Fremlin, R., & Boardman, B. (2010). Impact of climatic and soil conditions on environmental fate of atrazine used under plantation forestry in Australia, Journal of Environmental. Management, 91, 2649-2656.
  • [23] Lacassie, E., Marquet, P., Gaulier, J.M., Dreyfuss, M.F., & Lachâtre, G. (2001). Sensitive and specific multiresidue methods for the determination of pesticides of various classes in clinical and forensic toxicology, Forensic Science International, 121, 116-125.
  • [24] Lesueur, C., Gartner, M., Mentlem, A., & Fuerhacker, M. (2008). Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry, Talanta, 75, 284-293.
  • [25] Lima, D., Viana, P., André, S., Chelinho, S., Costa, C., Ribeiro, R., & Sousa, J.P. (2009). Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: The effectiveness of bioaugmentation and biostimulation approaches, Chemosphere, 74, 507-515.
  • [26] Lozowicka, B., & Kaczynski P. (2011). Pesticides residues in apples, Archives of Environmental Protection, 37, 43-54.
  • [27] Mackay, D., Shiu, W.Y., Kuo-Ching, M., & Lee, S.C. (2006). Physical-chemical properties and environmental fate for organic chemicals, CRC Press, Oxford.
  • [28] Mahia, J., & Diaz- Rahiña, M. (2007). Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems, Journal of Environmental Quality, 36, 826-831.
  • [29] Mahía, J., Martín, T., Carballas, M., & Díaz-Raviña C. (2007). Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems, Science of Total Environment, 378, 187-194.
  • [30] Makles, Z., & Domański, W. (2008). Ślady pestycydów-niebezpieczne dla człowieka i środowiska, Bezpieczeństwo Pracy, 436, 5-9.
  • [31] Markovic, M., Cupac, S., Ðurovic, R., Milinovic, J., & Kljajic, P. (2010). Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Archives of Environmental Contamination and Toxicology, 58, 341-351.
  • [32] Meakins, N., Bubb, J.M., & Lester, J.N. (1996). The mobility, partitioning and degradation of atrazine and simazine in the salt marsh, Environment Marine Water Bulletin, 12, 812-819.
  • [33] Min G., Wang, S., Zhu, H., & Fang, G. (2008). Multi-walled carbon nanotubes as solid-phase extraction adsorbents for determination of atrazine and its principal metabolites in water and soil samples by gas chromatography-mass spectrometry, Science of Total Environment, 386, 79-85.
  • [34] Mohammadi, A., Ameli, A., & Alizadeh, N. (2009). Headspace solid-phase microextraction using a dodecylsulfate-doped polypyrrole film coupled to ion mobility spectrometry for the simultaneous determination of atrazine and ametryn in soil and water samples, Talanta, 78, 1107-1114.
  • [35] Moreno, J.L., Aliaga, A., Navarro, S., Hernandez, T., & Garcıa, C. (2007). Effects of atrazine on microbial activity in semiarid soil, Applied Soil Ecology, 35, 120-127.
  • [36] Nahmani J., Hodson, M.E., & Black, S. (2007). A review of studies performed to assess metal uptake by earthworms, Environmental Pollution, 145, 402-424.
  • [37] Nemeth-Konda, L., Füleky, G., Morovjan, G., & Csokan, P. (2002) Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil, Chemosphere, 48, 545-552.
  • [38] Norra, S., Nabil, F., Fanwei, L., Xianfeng, C., Xudong, X., & Stüben, D. (2008). The Influence of Different Land Uses on Mineralogical and Chemical Composition and Horizonation of Urban Soil Profiles in Qingdao, China, Journal of Soils Sediments, 8, 4-16.
  • [39] Oleszczuk P. (2007). Biodostępność I bioakumulacja hydrofobowych zanieczyszczeń organicznych. Część II. Sorpcja zanieczyszczeń oraz czynniki wpływające na ten proces, Biotechnologia 76, 26-39.
  • [40] Ozcan, S., Tor, A., & Aydin, M.E. (2009). Application of miniaturized ultrasonic extraction to the analysis of organochlorine pesticides in soil, Analytica Chimic. Acta, 640, 53-57.
  • [41] Piotrowski J.K. (2006). Podstawy toksykologii, WNT, Warsaw 2006.
  • [42] Qiuhua, W., Zhi, L., Chunxia, W., Chun, W., & Wang, Y. (2010). Application of ultrasound-assisted emulsification microextraction for the determination of triazine herbicides in soil samples by high performance liquid chromatography, Microchimica Acta, 170, 59-65.
  • [43] Ribeiro A., Rodriguez-Maroto, J., Mateus, E.P., & Gomes, H. (2005). Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine.: Experimental and modelling, Chemosphere, 59, 1229-1239.
  • [44] Rosińska, A., & Dąbrowska, L. (2012). PCBs and heavy metals in water and bottom sediments of the Kozłowa Góra dam reservoir, Archives of Environmental Protection, 37, 61-73.
  • [45] Schutz S., Duhr, H.E., & Wollnik, A. (1994). Structural elucidation and trace analysis with combined hyphenated chromatographic and mass spectrometric methods. Potential of using hybrid sector mass spectrometry-time- -of-flight mass spectrometry for pesticide analysis, Journal of Chromatography A, 683, 141-148.
  • [46] Schwab, A.P., Splichal, P.A., & Banks, M.K. (2006). Persistence of atrazine and alachlor in ground water aquifers and soil, Water, Air and Soil Pollution, 177, 119-134.
  • [47] Seybold, C.A., Mersie, W., & McNamee, C. (2001). Removal and degradation of atrazine and metolachlor by vegetative filter strips on clay loam soil, Communications in Soil and Plant Analysis, 30, 1271-1277.
  • [48] Shen, G., & Lee, A.K. (2003). Determination of triazines in soil by microave-assisted extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry, Journal of Chromatography A, 985, 167-171.
  • [49] Sulmon, C., Gouesbet, G., Binet, F., Martin-Laurent, A., Amrani, E., & Couee I. (2007). Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana, Environmental Pollution, 145, 145-515.
  • [50] Tadeo, J.L, Sánchez-Brunete, C., Albero, B., & García-Valcárcel, A. (2010). Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples, Journal of Chromatography A, 1217, 2415-2440.
  • [51] Vagi. M.C., Petsas, A.S., Kostopoulou, M.N., Karamanoli, M.K., & Lekkas, T.D. (2007). Determination of organochlorine pesticides in marine sediments samples using ultrasonic solvent extraction followed by GC/ECD, Desalination, 210, 146-156.
  • [52] Ying, G.G, Kookana, R.S., & Mallavarpu, M. (2005). Release behavior of triazine residues in stabilised contaminated soils, Environmental Pollution, 134, 71-77.
  • [53] Zablotowicz R.M., Krutz, J.L., Weaver, M.A., Accinelli, C., & Reddy, K.N. (2007). Glufosinate and ammonium sulfate inhibit atrazine degradation in adapted soils, Biology and Fertility of Soils, 45, 19-26.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.