PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immobilization of Cadmium from Contaminated Sediment Using Cardboard Mill Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sludge from cardboard mill is most commonly landfilled, but it could also be recycled on-site into production or reused in some other way. In this study the use of sludge from cardboard mill as stabilizing agent in the stabilization treatment of cadmium polluted sediment was examined. The effectiveness of treatment and long-term leaching behavior of cadmium was evaluated by determining the cumulative percentage of cadmium leached, diffusion coefficients (De) and by applying different leaching tests (semi-dynamic test, toxicity characteristic leaching procedure, waste extraction test). In order to simulate the “worst case” leaching conditions, the semi-dynamic leaching test was modified using 0.014 M acetic acid (pH = 3.25) and humic acids solution (20 mg l-1 TOC) as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms. Applied treatment was effective in immobilizing cadmium irrespective of high availability in the untreated sample. The controlling leaching mechanism appeared to be diffusion, which indicates that a slow leaching of cadmium could be expected when the cardboard mill sludge as stabilization agent is applied.
Rocznik
Strony
109--118
Opis fizyczny
Bibliogr. 33 poz., tab.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia, miljana@uns.ac.rs
Bibliografia
  • [1] ANS (American National Standard) ANSI/ANS 16.1. (1986). American National Standard for the Measurement of the Leachibility of Solidified Low-Level Radioactive Wastes by a Short-Term Tests Procedures, American National Standards Institute, New York, NY.
  • [2] ASTM D1557-00. (2000). Standard test method for laboratory compaction characteristics of soil using modified effort American Society for Testing Materials, Annual Book of ASTM standards: ASTM D1557-91, ASTM, Philadelphia, 4.08.
  • [3] ASTM D4972-01 (2007). Annual Book of ASTM Standards, American Society for Testing and Materials. Soil and Rock, Vol. 04.08.
  • [4] Battaglia A., N. Calace, E. Nardi, B.M. Petronio, M. Pietroletti. (2007). Reduction of Pb and Znbioavailable forms in metal polluted soils due to paper mill sludge addition Effects on Pb and Zn transferability to barley, Bioresource Technology, 2993-2999.
  • [5] Bhattacharyya K.G., S.S. Gupta. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review, Advances in Colloid and Interface Science, 140, 114-131.
  • [6] Calace N., T. Campisi, A. Iacondini, M. Leonia, B.M. Petronio, M. Pietroletti. (2005) Metal contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation, Environment Pollution, 136, 485-492.
  • [7] CCME (Canadian Council of Ministers of the Environment). (1995). Protocol for the derivation of Canadian Sediment quality guidelines for the protection of aquatic life. CCME EPC-98E. Prepared by Environment Canada, Guideline Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines, Ottawa.
  • [8] CCR (California Code of Regulations). (1998). Title 22, Chapter 11, Article 5, Appendix II;
  • [9] Chang Chien S.W., M.C. Wang, C.C. Huang. (2006). Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc, Chemosphere, 64, 1353-1361.
  • [10] Covelo E.F., F.A. Vega, M.L. Andrade. (2007). Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences, Journal of Hazardous Materials, 147, 852-861.
  • [11] Coz A., A. Andrés, S. Soriano, J.R. Viguri, M.C. Ruiz, J.A. Irabien. (2009). Influence of commercial and residual sorbents and silicates as additives on the stabilisation/solidification of organic and inorganic industrial waste, Journal of Hazardous Materials, 164, 755-761.
  • [12] de Groot G.J., H.A. van der Sloot: Determination of leaching characteristics of waste materials cadmiuming to environmental product certification, in: T.M. Gilliam, C.C. Wiles (Eds.). (1992). Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, ASTMSTP 1123, American Society for Testing Materials, Philadelphia, PA, 2, 149-170.
  • [13] De la Rosa J.M., M. Santos, M.F. Araújo. (2011). Metal binding by humic acids in recent sediments from the SW Iberian coastal area, Estuarine Coastal and Shelf Science, 93, 478-485.
  • [14] Ghrefat H., N. Yusuf. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan, Chemosphere, 65, 2114-2121.
  • [15] ISO 11466. (1995). Soil quality. Extraction of trace elements soluble in aqua regia.
  • [16] Jain C.K. (2004). Metal fractionation study on bed sediments of River Yamuna, India, Water Research, 38, 569-578.
  • [17] Jamali M.K., T.G. Kazi, M.B. Arain, H.I. Afridi, N. Jalbani, G.A. Kandhro, A.Q. Shah, J.A. Baig. (2004). Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extraction procedure, Journal of Hazardous Materials, 163 (2-3), 1157-1164.
  • [18] Martley E., B. Gulson, H. Louie, M. Wu, P. Di. (2004). Metal partitioning in soil profiles in the vicinity of an industrial complex, New South Wales, Australia, Geochemistry: Exploration, Environment, Analysis, 4, 171-179.
  • [19] Ministry of Housing. (2000). Spatial Planning and Environment Directorate-General for Environmental Protection: Circular on target values and intervention values for soil remediation, Netherlands Goverment Gazette No. 39
  • [20] Monte M.C., E. Fuente, A. Blanco, C. Negro: Waste management from pulp and paper production in the European Union, Waste Management, 29 (1), 293-308 (2008).
  • [21] Moon, D.H. and Dermatas, D. (2007). Arsenic and cadmium release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. Journal of Hazardous Materials, Vol. 141, pp. 388-394.
  • [22] NEN 5754. (1994). Determination of organic matter content in soil as loss-on-ignition
  • [23] NEN 5762. (1994). Determination of cadmium content by atomic absorption spectrometry (flame technique).
  • [24] Passos E.A, J. C. Alves, I. S. dos Santos, J. P.H. Alves, C.A B. Garcia, A.C. S. Costa. (2010). Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis, Microchemical Journal, 96, 50-57.
  • [25] Pérez-Novo C., M. Pateiro-Moure, F. Osorio, J.C. Novoa-Muñoz, E. Lopez-Periago, M. Arias-Estevez, M. (2008). Influence of organic matter removal on competitive and noncompetitive adsorption of copper and cadmium in acid soils. Journal of Colloid and Interface Science, 322, 33-40.
  • [26] Ren-Ying, L., Hao, Y., Zhi-Gaol, Z., Jun-Jiel, L., S. Xiao-Hua, J. Fengl. (2007). Fractionation of heavy metals in sediments from Dianchi Lake, China, Pedosphere, 17, 265-272.
  • [27] Tessier, A., P.G.C. Campbell, M. Bisson. (1979). Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51, 844-851.
  • [28] Townsend T., B. Dubey, T. Tolaymat, H. Solo-Gabriele. (2005). Preservative leaching from weathered CCA-treated wood, Journal of Environmental Management, 75, 105-113.
  • [29] Townsend, T., Tolaymat, T., Solo-Gabriele, T, H., Dubey, B., Stook, K., Wadanambi, L. (2004). Leaching of CCA-treated wood: implications for waste disposal, Journal of Hazardous Materials, B114, 75-91.
  • [30] USEPA Toxicity characteristic leaching procedure, Method 1311, available at: www.EPA.gov/SW-846/1311.pdf (2002).
  • [31] Voglar G.E., D. Leštan, D. (2010). Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives. Journal of Hazardous Materials, 192, 753- 762.
  • [32] Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I. and Stottmeister, U. (2000). Remediation engineering of Contaminated Soils, Marcel Decker, Inc., NY, USA.
  • [33] Zhang Z., M. Li, W. Chen, S. Zhu, N. Liu, L. Zhu. (2010). Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite, Environmental Pollution, 158, 514-519.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0028-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.