PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Near Sets Within the Framework of Axiomatic Fuzzy Sets

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Near sets result from a generalization of rough sets, which introduced by Peters in 2006, and later formally defined in 2007. Near set theory provides a new framework for representation of objects characterized by the features that describe them. AFS (Axiomatic Fuzzy Set) theory was proposed by Liu (1998), which is a semantic methodology relating to the fuzzy theory. In this paper, a new version of near sets based on AFS theory is established, in which every object has an AFS fuzzy description with definitely semantics. The proposed approach to assessing the nearness (closeness) of objects is not defined directly using a distance metric, but depend on similarity of their fuzzy descriptions. It is also a natural linguistic description that is similar to humans perception. Moreover, an approach to set approximation based on the union of families of objects with similar fuzzy descriptions is given. The near sets based on AFS theory can be viewed as a new development of near sets within the fuzzy context.
Słowa kluczowe
Wydawca
Rocznik
Strony
291--304
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Anwar, S., Patnaik, K. S..Actor critic learning: a near set approach, (C. C. Chan et al., Eds.): Rough Sets and Current Trends in Computing 2008, LNAI 5306, Springer, Heidelberg, 2008, 252-261.
  • [2] Duntsch, I., Vakarelov, D.: Region-based theory of discrete spaces: A proximity approach. Discrete Applied Mathematics, 49(1-4), 2007,5-14.
  • [3] Galton, A.: The mereotopology of discrete space, Proceedings of the International Conference on Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Scien, 1999, 251-266.
  • [4] Gomolinska, A.: Satisfiability and meaning in approximation spaces. In: (G. Lindemann, H. D. Burkhard, L. Czaja, et al., Eds.), Concurrency, Specification and Programming (CS&P2004), Infomatik-Berichte, Nr. 170, ISSN 0863-095X, Humboldt-Universitt zu Berlin, 2004, 229-240.
  • [5] Gomolinska, A.: Satisfiability and meaning of formulas and sets of formulas in approximation spaces, Fundamenta Informaticae, 67(1-3), 2005,77-92.
  • [6] Gomolinska, A.: Rough validity, confidence, and coverage of rules in approximation spaces, Transactions on Rough Sets III, LNCS 3400, Springer, Heidelberg, 2005, 57-81.
  • [7] Gomolinska, A.: Possible rough ingredients of concepts in approximation spaces, Fundamenta Informaticae, 72(1-3), 2006, 139-154.
  • [8] Gomolinska, A.: Approximation spaces based on relations of similarity and dissimilarity of objects, Fundamenta Informaticae, 79(3-4), 2007, 319-333.
  • [9] Hassanien, A. E., Abraham, A., Peters, J. F., et al.: Rough sets and near sets in medical imaging: a review, IEEE Transaction on Information Technology in Biomedicine, 13(6), 2009, 955-968.
  • [10] Henry, C, Peters, J. R, Near set evaluation and recognition (NEAR) system, Tech. rep., Computationa Intelligence Laboratory, University of Manitoba, UM CI Laboratory Technical Report No. TR-2009-015 + complete system (2009,2010). URL http://vvren.ee.umanitoba.ca
  • [11] http://archive.ics.uci.edu/ml/datasetsAris
  • [12] Liu, X. D.: The fuzzy theory based on AFS algebras and AFS structure, Journal of Mathematical Analysis and Applications, 217(2), 1998,459-478.
  • [13] Liu, X. D.: The topology on AFS algebra and AFS structure, Journal of Mathematical Analysis and Applications, 217(2), 1998,479-489.
  • [14] Liu, X. D., Wang, W., Chai, T. Y.: The fuzzy clustering analysis based on AFS theory, IEEE Transactiona on Systems, Man & Cybernetics, Part B, 35(3), 2005, 1013-1027.
  • [15] Liu, X. D., Chai, T. Y., Wang, W.: Approaches to the representations and logic operations of fuzzy concepts in the framework of axiomatic fuzzy set theory 1, Information Sciences. 177(4), 2007, 1007-1026.
  • [16] Liu, X. D., Pedrycz, W: The Development of fuzzy decision trees in the framework of axiomatic fuzzy set logic, Applied Soft Computing, 7(1), 2007,325-342.
  • [17] Liu, X. D., Pedrycz, W.: Axiomatic fuzzy set theroy and its applications, Springer, Heidelberg, Germany, 2009.
  • [18] Liu, X. D., Pedrycz, W., Chai, T. Y., et al.: The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets, IEEE Transactions on Knowledge and Data Engineering, 2009, 21(3), 443-462.
  • [19] Pawlak, Z.: Classification of objects by means of attributes, Research Report PAS 429, Institute of Computer Science, Polish Academy of Sciences, ISSN 138-0648, January 1981.
  • [20] Pawlak, Z.: Rough Sets, Research Report PAS 431, Institute of Computer Science, Polish Academy of Sciences, 1981.
  • [21] Pawlak, Z.: Rough sets, International Journal of Computer and Information Sciences, 11, 1982, 341-356.
  • [22] Pawlak, Z.: Rough sets-theoretical aspects of reasoning about data, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
  • [23] Pawlak, Z., Skowron, A.; Rudiments OfWUjJll Ms, Information Sciences, 177(1), 2007, 3-27.
  • [24] Peters, J. F.: Approximation space for intelligent system design patterns, Engineering Applications of Artificial Intelligence, 17(4), 2004,1-8.
  • [25] Peters, J. F.: Approximation spaces for hierarchical intelligent behavioral system models. In: (B. D. Keplicz, A. Jankowski, A. Skowron, et al., Eds.), Monitoring, Security and Rescue Techniques in Multiagent Systems, Advances in Soft Computing, Springer, Heidelberg, 2004,13-30.
  • [26] Peters, J. F., Henry, C: Reinforcement learning with approximation spaces, Fundamenta Informaticae, 71(2-3), 2006,323-349.
  • [27] Peters, J. F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. In: Proc. Concurrency, Specification and Programming (CS&P 2006), Humboldt Universitat, 2006,435-445.
  • [28] Peters, J. F.: Near sets. Special theory about nearness of objects, Fundamenta Informaticae, 75(1-4), 2007, 407-433.
  • [29] Peters, J., Near sets. Toward approximation space-based object recognition, in: ( J. Yao, P. Lingras, W. Wu, et al., Eds.), LNAI4481, Springer, Berlin, 2007,22-33.
  • [30] Peters, J. F., Henry, C, Approximation spaces in off-policy Monte Carlo learning, Engineering Applications of Artificial Intelligence, 20(5), 2007,667-675.
  • [31] Peters, J. F., Skowron, A, Strpaniuk, J.: Nearness of objects: extension of approximaion space model, Fundamenta lnformaticae, 79(3-4), 2007,497-512.
  • [32] Peters, J. F.: Classification of objects by means of features. In: Proceedings of the IEEE Symposium Series on Foundations of Computational Intelligence (IEEE SCCI2007), Honolulu, Hawaii, 2007, 1-8.
  • [33] Peters, J. F., Near sets. General theory about nearness of objects, Applied Mathematical Sciences, 1(53), 2007,2609-2029.
  • [34] Peters, J. F.: Classification of perceptual objects by means of features, International Journal of Information Technology and Intelligent Computing, 3(2), 2008, 1-35.
  • [35] Peters, J. F., Wasilewski, P.: Foundations of near sets, Information Sciences, 179(18), 2009, 3091-3109.
  • [36] Peters, J. F., Ramanna, S.: Affinities between perceptual granules: Foundations and perspectives, in: (A. Bargiela, W. Pedrycz, Eds.), Human-Centric Information Processing Through Granular Modelling SCI, 182, Springer, Berlin, 2009,49-66.
  • [37] Peters, J. F., Tolerance near sets and image correspondence. International Journal of Bio-Inspired Computation, 1(4), 2009,239-245.
  • [38] Peters, J. F., Corrigenda and addenda: Tolerance near sets and image correspondence, International Journal of Bio-Inspired Computation, 2(5), 2010, 1-8, in press.
  • [39] Quinlan, J. R.: Decision trees and decision making, IEEE Transactions on Systems, Man and Cybernetics, PartC, 20(2), 1990,339-346.
  • [40] Ramanna, S., Peters, J. F., Skowron, A.: Generalized conflict and resolution model with approximation spaces. In: ( S. Greco, Y. Hata, S. Hirano, et al., Eds.) Rough Sets and Current Trends in Computing (RSCTC2006), LNAI4259, Springer, Heidelberg, 2006,274-283.
  • [411 Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: (T. Y. Lin, A. M. Wildberger, Eds.), Soft Computing, Simulation Councils, San Diego, 1995, 18-21.
  • [42] Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation, Transactions on Rough Sets III, LNCS 3400, Springer, Heidelberg, 2005,175-189.
  • [43] Skowron, A., Stepaniuk, J., Peters, J. F., Swiniarski, R.: Calculi of approximation spaces, Fundamenta lnformaticae, 72(1-3), 2006, 363-378.
  • [44] Stepaniuk, J.: Approximation spaces, reducts and representatives, In: (L. Polkowski, A. Skowron, Eds.) Rough sets in knowledge discovery, vol 2,109-126, Heidelberg: Physica-Verlag, 1998.
  • [45] Wang, L. D., Liu, X. D.: Concept analysis via rough set and AFS algebra, Information Sciences, 178(21), 2008:4125-4137.
  • [46] Wang, L. D., Liu, X. D., Cao, J. N.: A new algebraic structure for formal concept analysis, Information Sciences, 180(24), 2010,4865-4876.
  • [47] Wolski, M.: Similarity as nearness: Information quanta, approximation spaces and nearness structures. In: (G. Lindemann, H.Schlingloff, H. D. Burkhard, et al., Eds.), Concurrency, Specification and Programming (CS&P06), Infomatik-Berichte, Nr. 206,2006,424-433.
  • [48] Xu, X. L., Liu, X. D., Chen, Y: Applications of axiomatic fuzzy set clustering method on management strategic analysis, European Journal of Operational Research, 198(1), 2009, 297-304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0027-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.