PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tree Matrices and a Matrix Reduction Algorithm of Belitskii

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inspired by the bimodule matrix problem technique and various classification problems in poset representation theory, finite groups and algebras, we study the action of Belitskii algorithm on a class of square n by n block matrices M with coefficients in a field K. One of the main aims is to reduce M to its special canonical form M with respect to the conjugation by elementary transformations defined by a class of matrices chosen in a subalgebra of the full matrix algebra \mathbbMn(K). The algorithm can be successfully applied in the study of indecomposable linear representations of finite posets by a computer search using numeric and symbolic computation. We mainly study the case when the di-graph (quiver) associated to the output matrix M of the algorithm is a disjoint union of trees. We show that exceptional representations of any finite poset are determined by tree matrices. This generalizes a theorem of C.M. Ringel proved for linear representations of di-graphs.
Słowa kluczowe
Rocznik
Strony
253--279
Opis fizyczny
Bibliogr.33 poz.
Twórcy
autor
autor
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland, grzeczny@mat.umk.pl
Bibliografia
  • [1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
  • [2] M. Auslander, I. Reiten and S. Smal0, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995.
  • [3] G. Belitskii, Normal forms in matrix spaces, Integral Equations Operator Theory, 38 (2000), 251-283.
  • [4] G. Belitskii, C∞ -normal forms of local vector fields. Symmetry and perturbation theory, Acta Appl. Math., 70 (2002), 23-41.
  • [5] G. R. Belitskii and V. V. Sergeichuk, Complexity of matrix problems, Linear Algebra Appl., 361 (2003), 203-222.
  • [6] V. M. Bondarenko, T. G. Gerasimova and V. V. Sergeichuk, Pairs of mutually annihilating operators, Linear Algebra Appl., 430 (2009), 86-105.
  • [71 R. A. Brualdi and H. J. Ryser, Combinatorial matrix theory, Encyclopedia of Mathematics and its Applications, 39. Cambridge University Press, Cambridge, 1991.
  • [8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT, 1990.
  • [9] W.W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc, 56 (1998), 451-483.
  • [101 Yu. A. Drozd, Tame and wild matrix problems, in: Representations and quadratic forms, Collect. Sci. Works, Kiev 1979,39-74.
  • [11] V. Futorny,R. A. Horn and V. V. Sergeichuk, A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra Appl., 435 (2011), 830-841.
  • 112] P. Gabriel, Finite representation type is open, in: Representation of algebras, Lecure Notes in Math. 488, Springer 1975, 132-155.
  • [13] P. Gabriel, L.A. Nazarova, A.V. Roiter, V.V. Sergeichuk, D. Vossieck, Tame and wild subspace problems, Ukr.Math.]., 45 (1993), 335-372.
  • [14] P. Gabriel and A. V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopaedia of Math. Sc., Vol. 73, Springer-Verlag, 1992.
  • [15] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
  • [16] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets I, J. Pure Appl. Algebra 106 (1996), 307-330.
  • [17] S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets II, J. Algebra 187 (1997), 71-96.
  • [18] A. Kisielewicz and M. Szykuła, Rainbow induced subgraphs in proper vertex colorings, Fund. Inform. 111(2011),437-451.
  • [19] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform., 117 (2012)'??-??, in press.
  • [20] A. I. Kostrikin, Introduction to Algebra, Springer - Verlag, Berlin, Heidelberg, New York, 1982.
  • [21] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1984.
  • [22] J. A. de la Pefta, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra, 19 (1991), 1795-1807.
  • [23] J. A. de la Pena and D. Simson, Prinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences, Trans. Amer. Math. Soc, 329 (1992), 733-753.
  • [24] CM. Ringel, Exceptional modules are tree modules, Proceedings of the Sixth Conference of the International Linear Algebra Society (Chemnitz, 1996). Linear Algebra Appl. 275/276 (1998), 471-493.
  • [25] C. M. Ringel, Combinatorial representation theory history and future. Representations of algebra. Vol. I, II, 122-144, Beijing Norm. Univ. Press, Beijing, 2002.
  • [26] V. V. Sergeichuk, Canonical matrices for linear matrix problems, Linear Algebra Appl., 317 (2000), 53-102.
  • [27] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publishers, 1992.
  • [28] D. Simson, Mesh algorithms for solving principal diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109(2011),425-462, doi: 103233//FI-2011-603.
  • [29] D. Simson, Algorithms determining matrix modifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform., 117 (2012) ??-??, 'in press.
  • [30] D. Voigt, lnduzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Mathematics, Vol. 592. Springer-Verlag, Berlin-New York, 1977.
  • [31] D. Simson and M. Wojewódzki, An algorithmic solution of a Birkhofftype problem, Fund. Inform. 83(2008), 389-410.
  • [32] T. Weist, Tree modules of the generalised Kronecker quiver, J. Algebra 323 (2010), 1107-1138.
  • [33] T. Weist, Tree modules, e-prinf. arXiv: 1011.1203v3 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0027-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.