PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spearman Permutation Distances and Shannon's Distinguishability

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spearman distance is a permutation distance which might be used for codes in permutations beside Kendall distance. However, Spearman distance gives rise to a geometry of strings, which is rather unruly from the point of view of error correction and error detection. Special care has to be taken to discriminate between the two notions of codeword distance and codeword distinguishability. This stresses the importance of rejuvenating the latter notion, extending it from Shannon's zero-error information theory to the more general setting of metric string distances.
Wydawca
Rocznik
Strony
245--252
Opis fizyczny
Bibliogr. 12 poz., tab.
Twórcy
autor
autor
  • University of Bucharest, Faculty of Mathematics and Computer Science, Academiei 14, 010014, Bucharest, Romania, ldinu@fmi.unibuc.ro
Bibliografia
  • [1] Al. Barg, A. Mazumdar. Codes in Permutations and Error Correction for Rank Modulation. IEEE Trans. Inform. Th., 56 (7) 3158-3165,2010.
  • [2] L. Bortolussi, A. Sgarro. Possibilistic Coding: Error Detection vs. Error Correction, in Combining Soft Computing and Statistical Methods in Data Analysis, ed. by Ch. Borgelt et alt., Advances in Intelligent and Soft Computing 77, Springer Vcrlag, 41-48,2010.
  • [3] A. Condon, R.M. Corn, and A. Marathe. On Combinatorial DNA Word Design. Journal of Computational Biology, 8(3), 201-220, November 2001.
  • [4] Fr.J. Damerau. A Technique for Computer Detection and Correction of Spelling Errors. Communications of the ACM, 7 (3) 171-176,1964
  • [5] E. Deza, M.M. Deza. Dictionary of Distances. Elsevier, Amsterdam, 2006
  • [61 P. Diaconis, R.L. Graham, Spearman Footrule as a Measure of Disarray, Journal of Royal Statistical Society. Series B Methodological, 39(2), 262-268,1977
  • [7] L.P. Dinu, A. Sgarro. A Low-Complexity Distance for DNA Strings. Fundamenta Informaticae, 73(3), 361-372,2006
  • [8] J. Kórner, A. Orlitsky. Zero-error information theory. IEEE Trans. Inform. T/i., 44 (6) 2207-2229,1998.
  • [9] J van Lint. Introduction to Coding Theory. Springer Verlag, Berlin, 1999.
  • [10] Cl. E. Shannon. The Zero-Error Capacity of a Noisy Channel. IRE Trans. Inform. Th., 2, 8-19, 1956.
  • [11] A. Sgarro. Possibilistic Information Theory, a Coding-Theoretic Approach. Fuzzy Sets and Systems, 132-1, 11-32,2002.
  • [12] P. Walley, Peter (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0027-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.