Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For decades, scientists have sought to elucidate self-organized patterning during development of higher organisms. It has been shown that cell interaction plays a key role in this process. One example is the community effect, an interaction among undifferentiated cells. The community effect allows cell population to forge a common identity, that is, coordinated and sustained tissue-specific gene expression. The community effect was originally observed in muscle differentiation in Xenopus embryos, and is now thought to be a widespread phenomenon. From a modelling point of view, the community effect is the existence of a threshold size of cell populations, above which the probability of tissue-specific gene expression for a sustained period increases significantly. Below this threshold size, the cell population fails to maintain tissue-specific gene expression after the initial induction. In this work, we examine the dynamics of a community effect in space and investigate its roles in two other processes of self-organized patterning by diffusible factors: Turing’s reaction-diffusion system and embryonic induction by morphogens. Our major results are the following. First, we show that, starting from a one-dimensional space model with the simplest possible feedback loop, a community effect spreads in an unlimited manner in space. Second, this unrestricted expansion of a community effect can be avoided by additional negative feedback. In Turing’s reaction-diffusion system with a built-in community effect, if induction is localized, sustained activation also remains localized. Third, when a simple cross-repression gene circuitry is combined with a community effect loop, the system self-organizes. A gene expression pattern with a well-demarcated boundary appears in response to a transient morphogen gradient. Surprisingly, even when the morphogen distribution eventually becomes uniform, the system can maintain the pattern. The regulatory network thus confers memory of morphogen dynamics.
Wydawca
Czasopismo
Rocznik
Tom
Strony
419--461
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
- Lille University, Laboratoire d’Informatique Fondamentale de Lille (LIFL, CNRS UMR 8022), Cite Scientifique, Batiment M3, 59655 Villeneuve d’Ascq CEDEX, France, kirill.batmanov@lifl.fr
Bibliografia
- [1] Ackers, G. K., Johnson, A. D., Shea, M. A.: Quantitative Model for Gene Regulation by λ Phage Repressor, Proceedings of the National Academy of Sciences USA, 79(4), February 1982, 1129-1133.
- [2] Alon, U.: Network motifs: theory and experimental approaches., Nature reviews Genetics, 8(6), June 2007, 450-61.
- [3] Berg, H. C.: Random Walks in Biology, (Princeton University Press, Princeton, 1993).
- [4] Bernstein, D.: Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm., Physical review. E, Statistical, nonlinear, and soft matter physics, 71(4 Pt 1), April 2005, 041103.
- [5] Bolouri, H., Davidson, E. H.: The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example, Developmental Biology, 340(2), 2010, 170-8.
- [6] Cardelli, L.: Artificial biochemistry, Algorithmic Bioprocesses, LNCS, Springer, 2008.
- [7] Cardelli, L., Zavattaro, G.: On the Computational Power of Biochemistry, Proceedings of the 3rd international conference on Algebraic Biology, Springer-Verlag, Berlin, Heidelberg, 2008.
- [8] Chabrier-Rivier, N., Fages, F., Soliman, S.: The Biochemical Abstract Machine BioCham, Proceedings of CMSB 2004, 3082, 2005.
- [9] Cherry, J. L., Adler, F. R.: How to make a biological switch, Journal of Theoretical Biology, 203(2), March 2000, 117-33.
- [10] Crick, F.: Diffusion in embryogenesis, Nature, 225(5233), February 1970, 671.
- [11] Danos, V., Feret, J., Fontana,W., Krivine, J.: Scalable simulation of cellular signaling networks, Proceedings of the 5th Asian conference on Programming languages and systems, APLAS'07, Springer-Verlag, 2007.
- [12] Danos, V., Laneve, C.: Formal Molecular Biology, Theoretical Computer Science, 325(1), 2004, 69-110.
- [13] Davidson, E. H.: The Regulatory Genome: Gene Regulatory Networks In Development And Evolution, Academic Press, 2006.
- [14] Davidson, E. H.: Emerging properties of animal gene regulatory networks, Nature, 468(7326), December 2010, 911-920.
- [15] Dessaud, E., Ribes, V., Balaskas, N., Yang, L. L., Pierani, A., Kicheva, A., Novitch, B. G., Briscoe, J., Sasai, N.: Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog, PLoS Biology, 8(6), January 2010, e1000382.
- [16] Duboc, V., Lapraz, F., Besnardeau, L., Lepage, T.: Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation, Developmental Biology, 320(1), 2008, 49 - 59.
- [17] Evans, L.: Partial Differential Equations, American Mathematical Society, Providence, 1998, ISBN 0821807722.
- [18] Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods, vol. 7 of Handbook of Numerical Analysis, Elsevier, 2000.
- [19] Gardner, T. S., Cantor, C. R., Collins, J. J.: Construction of a genetic toggle switch in Escherichia coli., Nature, 403(6767), January 2000, 339-42.
- [20] Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, 2, 2000, 1876-1889.
- [21] Gillespie, D. T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, 22, 1976, 403-434.
- [22] Gurdon, J. B.: A community effect in animal development, Nature, 336(6201), 1988, 772-4.
- [23] Gurdon, J. B., Mitchell, A., Mahony, D.: Direct and continuous assessment by cells of their position in a morphogen gradient, Nature, 376(6540), Aug 1995, 520-521.
- [24] Gurdon, J. B., Mitchell, A., Ryan, K.: An experimental system for analyzing response to a morphogen gradient, Proc Natl Acad Sci U S A, 93(18), Sep 1996, 9334-8.
- [25] Gurdon, J. B., Tiller, E., Roberts, J., Kato, K.: A community effect in muscle development, Current Biology, 3(1), 1993, 1-11.
- [26] Hamada, H., Meno, C., Watanabe, D., Saijoh, Y.: Establishment of vertebrate left-right asymmetry, Nature reviews Genetics, 3(2), February 2002, 103-13.
- [27] Harvey, S. a., Smith, J. C.: Visualisation and quantification of morphogen gradient formation in the zebrafish, PLoS Biology, 7(5), May 2009, e1000101.
- [28] Jaeger, J., Blagov, M., Kosman, D., Kozlov, K. N., Manu, Myasnikova, E., Surkova, S., Vanario-Alonso, C. E., Samsonova, M., Sharp, D. H., Reinitz, J.: Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster, Genetics, 167(4), August 2004, 1721-37.
- [29] Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K. N., Manu, Myasnikova, E., Vanario-Alonso, C. E., Samsonova, M., Sharp, D. H., Reinitz, J.: Dynamic control of positional information in the early Drosophila embryo, Nature, 430(6997), July 2004, 368-71.
- [30] John, M., Lhoussaine, C., Niehren, J., Versari, C.: Biochemical Reaction Rules with Constraints., European Symposium On Programming (ESOP) (G. Barthe, Ed.), 6602, Springer, 2011.
- [31] Jonsson, H., Heisler, M., Reddy, G. V., Agrawal, V., Gor, V., Shapiro, B. E., Mjolsness, E., Meyerowitz, E. M.: Modeling the organization of the Wuschel expression domain in the shoot apical meristem, Bioinformatics, 21(suppl 1), 2005, i232-i240.
- [32] Kaern, M., Elston, T., Blake, W., Collins, J.: Stochasticity in gene expression: from theories to phenotypes, Nature Reviews Genetics, 6(6), 2005, 451-467.
- [33] Kampen, N. V.: Stochastic Processes in Physics and Chemistry, North Holland, 2001.
- [34] Kondo, S., Asai, R.: A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376(6543), 1995, 765-768.
- [35] Kondo, S., Miura, T.: Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation, Science, 329(5999), September 2010, 1616-1620.
- [36] Meinhardt, H.: Models of biological pattern formation, vol. 6, Academic Press, 1982.
- [37] Meinhardt, H.: The algorithmic beauty of sea shells., The virtual laboratory, Springer, 1995.
- [38] Meinhardt, H.: Models for the generation and interpretation of gradients, Cold Spring Harbor Perspectives in Biology, 1(4), October 2009, a001362.
- [39] Meinhardt, H., Gierer, a.: Applications of a theory of biological pattern formation based on lateral inhibition, Journal of Cell Science, 15(2), July 1974, 321-46.
- [40] Nicolis, G., Prigogine, I.: Self-organisation in non-equilibrium systems, Wiley International, 1977.
- [41] Oates, A. C., Gorfinkiel, N., González-Gaitán, M., Heisenberg, C.-P.: Quantitative approaches in developmental biology, Nature reviews Genetics, 10(8), August 2009, 517-30.
- [42] Papatsenko, D., Levine, M.: The Drosophila Gap Gene Network Is Composed of Two Parallel Toggle Switches, PLoS ONE, 6(7), 07 2011, e21145.
- [43] Ptashne, M.: A genetic switch: phage lambda revisited, 3rd ed edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2004.
- [44] Raj, A., van Oudenaarden, A.: Nature, nurture, or chance: stochastic gene expression and its consequences, Cell, 135(2), October 2008, 216-26.
- [45] Ribes, V., Briscoe, J.: Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback, Cold Spring Harbor Perspectives in Biology, 1(2), August 2009, a002014.
- [46] Saka, Y., Lhoussaine, C., Kuttler, C., Ullner, E., Thiel, M.: Theoretical basis of the community effect in development, BMC Systems Biology, 5, March 2011, 54.
- [47] Saka, Y., Smith, J. C.: A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus, BMC Developmental Biology, 7, 2007, 47.
- [48] Sanderson, A., Kirby, R., Johnson, C., Yang, L.: Advanced Reaction-Diffusion Models for Texture Synthesis, Journal of Graphics Tools, 11(3), 2006, 47-71.
- [49] Turing, A. M.: The Chemical Basis of Morphogenesis, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641), 1952, 37-72.
- [50] Wartlick, O., Kicheva, A., González-Gaitán, M.: Morphogen gradient formation, Cold Spring Harbor Perspectives in Biology, 1(3), September 2009, a001255.
- [51] Wolpert, L.: Positional information and the spatial pattern of cellular differentiation., Journal of Theoretical Biology, 25(1), October 1969, 1-47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0027-0012