PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Adaptive Coarse Graining Method for Signal Transduction in Three Dimensions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spatio-temporal landscape of the plasma membrane regulates activation and signal transduction of membrane bound receptors by restricting their two-dimensional mobility and by inducing receptor clustering. This regulation also extends to complex formation between receptors and adaptor proteins, which are the intermediate signaling molecules involved in cellular signaling that relay the received cues from cell surface to cytoplasm and eventually to the nucleus. Although their investigation poses challenging technical difficulties, there is a crucial need to understand the impact of the receptor diffusivity, clustering, and spatial heterogeneity, and of receptor-adaptor protein complex formation on the cellular signal transduction patterns. Building upon our earlier studies, we have developed an adaptive coarse-grained Monte Carlo method that can be used to investigate the role of diffusion, clustering and membrane corralling on receptor association and receptor-adaptor protein complex formation dynamics in three dimensions. The new Monte Carlo lattice based approach allowed us to introduce spatial resolution on the 2-D plasma membrane and to model the cytoplasm in three-dimensions. Being a multi-resolution approach, our new method makes it possible to represent various parts of the cellular system at different levels of detail and enabled us to utilize the locally homogeneous assumption when justified (e.g., cytoplasmic region away from the cell membrane) and avoid its use when high spatial resolution is needed (e.g., cell membrane and cytoplasmic region near the membrane) while keeping the required computational complexity manageable. Our results have shown that diffusion has a significant impact on receptor-receptor dimerization and receptor-adaptor protein complex formation kinetics. We have observed an adaptor protein hopping mechanism where the receptor binding proteins may hop between receptors to form short-lived transient complexes. This increased residence time of the adaptor proteins near cell membrane and their ability to frequently change signaling partners may explain the increase in signaling efficiency when receptors are clustered. We also hypothesize that the adaptor protein hopping mechanism can cause concurrent or sequential activation of multiple signaling pathways, thus leading to crosstalk between diverse biological functions.
Słowa kluczowe
Wydawca
Rocznik
Strony
371--384
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA 02142, USA
Bibliografia
  • [1] Andrews, N. L., K. A. Lidke, et al.: "Actin restricts FcepsilonRI diffusion and facilitates antigen-induced receptor immobilization." Nat Cell Biol 10(8): 955-963, 2008.
  • [2] Berg, H. C.: Random walks in biology. Princeton, NJ, Princeton University Press, 1993.
  • [3] Bonneau, R., D.J. Reiss, et al.: "The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo." Genome Biol 7(5): R36, 2006.
  • [4] Carpenter, S. and L.A. O'Neill: "Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins." Biochem J 422(1): 1-10, 2009.
  • [5] Chatterjee, A., M.A. Katsoulakis, et al.: "Spatially adaptive grand canonical ensemble Monte Carlo simulations." Physical Review E 71(2): -, 2005.
  • [6] Chatterjee, A., M.A. Snyder, et al.: "Mesoscopic modeling of chemical reactivity." Chemical Engineering Science 59(22-23): 5559-5567, 2004.
  • [7] Chatterjee, A. and D.G. Vlachos: "An overview of spatial microscopic and accelerated kinetic Monte Carlo methods." Journal of Computer-Aided Materials Design 14(2): 253-308, 2007.
  • [8] Chatterjee, A., D.G. Vlachos, et al.: "Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules." J Chem Phys 121(22): 11420-11431, 2004.
  • [9] Chatterjee, A., D.G. Vlachos, et al.: "Numerical assessment of theoretical error estimates in coarse-grained kinetic Monte Carlo simulations: Application to surface diffusion." International Journal for Multiscale Computational Engineering 3(1): 59-70, 2005.
  • [10] Chen, Y., B. Yang, et al.: "Transient confinement zones: a type of lipid raft?" Lipids 39(11): 1115-1119, 2004.
  • [11] Collins, S., M. Stamatakis, et al.: "Adaptive coarse-grained Monte Carlo simulation of reaction and diffusion dynamics in heterogeneous plasma membranes." BMC Bioinformatics 11: 218, 2010.
  • [12] Collins, S.D., A. Chatterjee, et al.: "Coarse-grained kinetic Monte Carlo models: Complex lattices, multicomponent systems, and homogenization at the stochastic level." J Chem Phys 129(18): 184101, 2008.
  • [13] Costa, M.N., K. Radhakrishnan, et al.: "Coupled Stochastic Spatial and Non-Spatial Simulations of ErbB1 Signaling Pathways Demonstrate the Importance of Spatial Organization in Signal Transduction." Plos One 4(7): -, 2009.
  • [14] Dietrich, C., B. Yang, et al.:. "Relationship of lipid rafts to transient confinement zones detected by single particle tracking." Biophys J 82(1 Pt 1): 274-284, 2002.
  • [15] Gillespie, D.T.: "Exact stochastic simulation of coupled chemical-reactions." Journal of Physical Chemistry 81(25): 2340-2361, 1977.
  • [16] Hsieh, M.Y., S. Yang, et al.: "Spatio-temporal modeling of signaling protein recruitment to EGFR." BMC Syst Biol 4: 57, 2010.
  • [17] Jain, K.A., U.M. Hamper, et al.: "Comparison of transvaginal and transabdominal sonography in the detection of early pregnancy and its complications." AJR Am J Roentgenol 151(6): 1139-1143, 1988.
  • [18] Janssens, S. and R. Beyaert: "Role of Toll-like receptors in pathogen recognition." Clin Microbiol Rev 16(4): 637-646, 2003.
  • [19] Kelly, C.V., M.M. Kober, et al.:. "Pulsed-laser creation and characterization of giant plasma membrane vesicles from cells." J Biol Phys 35(3): 279-295, 2009.
  • [20] Kempiak, S.J., S.C. Yip, et al.: "Local signaling by the EGF receptor." J Cell Biol 162(5): 781-787, 2003.
  • [21] Kholodenko, B.N.: "Cell-signalling dynamics in time and space." Nat Rev Mol Cell Biol 7(3): 165-176, 2006.
  • [22] Kholodenko, B.N., O.V. Demin, et al.: "Quantification of short term signaling by the epidermal growth factor receptor." J Biol Chem 274(42): 30169-30181, 1999.
  • [23] Kholodenko, B.N., J.F. Hancock, et al.: "Signalling ballet in space and time." Nat Rev Mol Cell Biol 11(6): 414-426, 2010.
  • [24] Kholodenko, B.N. and W. Kolch: "Giving space to cell signaling." Cell 133(4): 566-567, 2008.
  • [25] Konopka, M.C., I.A. Shkel, et al.: "Crowding and confinement effects on protein diffusion in vivo." J Bacteriol 188(17): 6115-6123, 2006.
  • [26] Kusumi, A., H. Ike, et al.: "Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules." Semin Immunol 17(1): 3-21, 2005.
  • [27] Kusumi, A., C. Nakada, et al.: "Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules." Annu Rev Biophys Biomol Struct 34: 351-378, 2005.
  • [28] Kusumi, A., K. Suzuki, et al.: "Mobility and cytoskeletal interactions of cell adhesion receptors." Curr Opin Cell Biol 11(5): 582-590, 1999.
  • [29] Lin, S.C., Y.C. Lo, et al.: "Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling." Nature, 2010.
  • [30] McCoy, C.E. and L.A. O'Neill: "The role of toll-like receptors in macrophages." Front Biosci 13: 62-70, 2008.
  • [31] Phillips, R.K., J; Theriot, J.: Physical Biology of the Cell, 2009.
  • [32] Pralle, A., P. Keller, et al.: "Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells." J Cell Biol 148(5): 997-1008, 2010.
  • [33] Regueiro, V., D. Moranta, et al.: "Klebsiella pneumoniae increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells." Infect Immun 77(2): 714-724, 2009.
  • [34] Resat, H., M.N. Costa, et al.: "Spatial aspects in biological system simulations." Methods Enzymol 487: 485-511, 2011.
  • [35] Resat, H., J.A. Ewald, et al.: "An integrated model of epidermal growth factor receptor trafficking and signal transduction." Biophys J 85(2): 730-743, 2003.
  • [36] Resat, H., H.S. Wiley, et al.: "Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations." Journal of Physical Chemistry B 105(44): 11026-11034, 2001.
  • [37] Reynolds, A.R., C. Tischer, et al.: "EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation." Nat Cell Biol 5(5): 447-453, 2003.
  • [38] Ritchie, K. and A. Kusumi: "Role of the membrane skeleton in creation of microdomains." Subcell Biochem 37: 233-245, 2004.
  • [39] Sasagawa, S., Y. Ozaki, et al.: "Prediction and validation of the distinct dynamics of transient and sustained ERK activation." Nat Cell Biol 7(4): 365-373, 2005.
  • [40] Schlessinger, J.: "Cell signaling by receptor tyrosine kinases." Cell 103(2): 211-225, 2000.
  • [41] Shankaran, H., H.S. Wiley, et al.: "Modeling the effects of HER/ErbB1-3 coexpression on receptor dimerization and biological response." Biophys J 90(11): 3993-4009, 2006.
  • [42] Shankaran, H., H.S. Wiley, et al.: "Receptor downregulation and desensitization enhance the information processing ability of signalling receptors." BMC Syst Biol 1: 48, 2007.
  • [43] Singer, S.J. and G.L. Nicolson: "The fluid mosaic model of the structure of cell membranes." Science 175(23): 720-731, 1972.
  • [44] Suenaga, A., M. Hatakeyama, et al.: "Molecular dynamics simulations reveal that Tyr-317 phosphorylation reduces Shc binding affinity for phosphotyrosyl residues of epidermal growth factor receptor." Biophys J 96(6): 2278-2288, 2009.
  • [45] Tanaka, T., K. Oh-Hashi, et al.: "NF-kappaB independent signaling pathway is responsible for LPS-induced GDNF gene expression in primary rat glial cultures." Neurosci Lett 431(3): 262-267, 2008.
  • [46] Tian, T., A. Harding, et al.: "Plasma membrane nanoswitches generate high-fidelity Ras signal transduction." Nat Cell Biol 9(8): 905-914, 2007.
  • [47] Xavier, R., S. Rabizadeh, et al.: "Discs large (Dlg1) complexes in lymphocyte activation." J Cell Biol 166(2): 173-178, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0027-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.