PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.
Rocznik
Strony
515--520
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
  • Department of Mechanical Engineering, Faculty of Engineering, University of Marmara Göztepe Campus 34722, Kadýköy – Ystanbul, TURKEY, bulent.ekici@marmara.edu.tr
Bibliografia
  • 1. Aranguren M.I., Rácz I., Marcovich N.E. (2007), Microfoams based on castor oil polyurethanes and vegetable fibers, Journal of Applied Polymer Science, 105, 5, 2791-2800.
  • 2. Büyükakinci Y., Sökmen N., Kücük H. (2011), Thermal Conductivity and Acoustic Properties of Natural Fiber Mixed Polyurethane Composites, Tekstil ve Konfeksiyon, 21, 2, 124-132.
  • 3. Chen C.H., Ma C.C.M. (1992a), Pultruded fiber reinforced polyurethane composites. I. Process feasibility and morphology, Composites Science and Technology, 45, 4, 335-344.
  • 4. Chen C.H., Ma C.C.M. (1992b), Pultruded fiber reinforced blocked polyurethane (PU) composites. II. Processing variables and dynamic mechanical properties, Journal of Applied Polymer Science, 46 ,6, 949-957.
  • 5. Chen C.H., Ma C.C.M. (1994), Pultruded fibre-reinforced polyurethane composites. III. Static mechanical, thermal, and dynamic mechanical properties, Composites Science and Technology, 52, 3, 427-432.
  • 6. Chen W., Tao X., Liu Y. (2006), Carbon nanotubereinforced polyurethane composite fibers, Composites Science and Technology, 66, 15, 3029-3034.
  • 7. Demir I. (2006), An investigation on the production of construction brick with processed waste tea, Building and Environment, 41, 9, 1274-1278.
  • 8. Ersoy S., K쮞c릅uk H. (2009), Investigation of Industrial Tea-Leaf-Fibre Waste Material For Its Sound Absorption Propertiesi, Applied Acoustics, 70, 1, 215-220.
  • 9. Jang S.Y., Kim D.J., Seo K.H. (2001), Physical Properties of Garnet-Filled Polyurethane Foam Composite, Journal of Applied Polymer Science, 79, 7, 1336-1343.
  • 10. Kucerova Z., Zajickova L., Bursikova V., Kudrle V., Elias M., Jasek O., Synek P., Matejkova J., Bursik J. (2009), Mechanical and microwave absorbing properties of carbon-filled polyurethane, Micron, 40, 1, 70-73.
  • 11. Mahmoud A.A., El-Nagar K.E. (2011), Characterization of the Acoustic Behaviours of Laminated Polyester Fabric Using Different Adhesion Systems, Australian Journal of Basic and Applied Sciences, 5, 4, 96-101.
  • 12. Mello D.D., Pezzin S.H., Amico S.C. (2009), The effect of post-consumer PET particles on the performance of flexible polyurethane foams, Polymer Testing, 28, 7, 702-708.
  • 13. Saint-Michel F., Chazeau L., Cavaille J.Y. (2006), Mechanical properties of high density polyurethane foams: II Effect of the filler size, Composites Science and Technology, 66, 15, 2709-2718.
  • 14. Saliba C.C., Or큖fice R.L., Carneiro J.R.G., Duarte A.K., Schneider W.T., Fernandes M.R.F. (2005), Effect of the incorporation of a novel natural inorganic short fiber on the properties of polyurethane composites, Polymer Testing, 24, 7, 819-824.
  • 15. Seyidbeyo˘glu M. O., Oksman K. (2008), Novel nanocomposites based on polyurethane and micro firillated cellulose, Composites Science and Technology, 68, 3-4, 908-914.
  • 16. Silva R.V., Spinelli D., FilhoW.W.B., Neto S.C., Chierice G.O., Tarpani J.R. (2006), Fracture toughness of natural fibers/castor oil polyurethane composites, Composites Science and Technology, 66, 10, 1328-1335.
  • 17. Vaikhanksi L., Nutt S.R. (2003a), Synthesis of composite foam from thermoplastic microspheres and 3D long fibers, Composites: Part A, 34, 8, 755-763.
  • 18. Vaikhanksi L., Nutt S.R. (2003b), Fiber-reinforced composite foam from expandable PVC microspheres, Composites: Part A, 34, 12, 1245-1253.
  • 19. Verdejo R., Stampfli R., Alvarez-Lainez M., Mourad S., Rodriguez-Perez M.A., Bruhwiler P.A., Shaffer M. (2009), Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes, Composites Science and Technology, 69, 10, 1564-1569.
  • 20. Wal S.V.D. (2008), Sustainability Issues in the Tea Sector, Report of SOMO Centre for Research on Multinational Corporations, Amsterdam.
  • 21. Xiong J., Zheng Z., Song W., Zhou D., Wang X. (2008), Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-orthochloroanilline-grafted multi-walled carbon nanotubes, Composites: Part A, 39, 5, 904-910.
  • 22. Yalinkilic M.K., Imamura Y., Takahashi M., Kalaycioglu H., Nemli G., Demirci Z., Ozdemir T. (1998), Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves, International Biodeterioration & Biodegradation, 41, 1, 75-84.
  • 23. Yang Z.G., Zhao B., Qin S.L., Hu Z.F., Jin Z.K., Wang J.H. (2004), Study on the Mechanical Properties of Hybrid Reinforced Rigid Polyurethane Composite Foam, Journal of Applied Polymer Science, 92, 3, 1493-1500.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.