PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Noise Elimination of a Multi-tone Broadband Noise with Hybrid Helmholtz Mufflers Using a Simulated Annealing Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise control is essential in an enclosed machine room where the noise level has to comply with the occupational safety and health act. In order to overcome a pure tone noise with a high peak value that is harmful to human hearing, a traditional reactive muffler has been used. However, the traditional method for designing a reactive muffler has proven to be time-consuming and insufficient. In order to efficiently reduce the peak noise level, interest in shape optimization of a Helmholtz muffler is coming to the forefront. Helmholtz mufflers that deal with a pure tone have been adequately researched. However, the shape optimization of multi-chamber Helmholtz mufflers that deal with a broadband noise hybridized with multiple tones within a constrained space has been mostly ignored. Therefore, this study analyzes the sound transmission loss (STL) and the best optimized design for a hybrid Helmholtz muffler under a space- constrained situation. On the basis of the plane wave theory, the four-pole system matrix used to evaluate the acoustic performance of a multi-tone hybrid Helmholtz muffler is presented. Two numerical cases for eliminating one/two tone noises emitted from a machine room using six kinds of mufflers (muffler AF) is also introduced. To find the best acoustical performance of a space-constrained muffler, a numerical assessment using a simulated annealing (SA) method is adopted. Before the SA operation can be carried out, the accuracy of the mathematical model has been checked using the experimental data. Eliminating a broadband noise hybridized with a pure tone (130 Hz) in Case I reveals that muffler C composed of a one- chamber Helmholtz Resonator and a one-chamber dissipative element has a noise reduction of 54.9 (dB). Moreover, as indicated in Case II, muffler F, a two-chamber Helmholtz Resonator and a one-chamber dissipative element, has a noise reduction of 69.7 (dB). Obviously, the peak values of the pure tones in Case I and Case II are efficiently reduced after the muffler is added. Consequently, a successful approach in eliminating a broadband noise hybridized with multiple tones using optimally shaped hybrid Helmholtz mufflers and a simulated annealing method within a constrained space is demonstrated.
Rocznik
Strony
489--498
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Department of Mechanical and Automation Engineering, Chung Chou University of Science and Technology No. 6, Lane 2, Sec.3, Shanchiao Rd., Yuanlin, Changhua 51003, Taiwan, R.O.C., minchie.chiu@msa.hinet.net
Bibliografia
  • 1. Alley B.C., Dufresne R.M., Kanji N., Reesal M.R. (1989), Costs of workers' compensation claims for hearing loss, Journal of Occupational Medicine, 31, 134-138.
  • 2. Alster M. (1972), Improved calculation of resonant frequencies of Helmholtz resonators, J. Sound Vib., 24, 63-85.
  • 3. Chanaud R.C. (1994), Effects of geometry on the resonance frequency of Helmholtz resonators, J. Sound Vib., 178, 337-348.
  • 4. Chanaud R.C. (1997), Effects of geometry on the resonance frequency of Helmholtz resonators, Part II., J. Sound Vib., 204, 5, 829-834.
  • 5. Cheremisinoff P.N., Cheremisinoff P.P. (1977), Industrial noise control handbook, Ann Arbor Science, Michigan.
  • 6. Chiu M.C. (2008), Shape optimization of doublechamber side mufflers with extended tube by using fourpole matrix and simulated annealing method, J. of Mechanics, 24, 31-43.
  • 7. Chiu M.C., Chang Y.C. (2008), Numerical studies on venting system with multi-chamber perforated mufflers by GA optimization, Applied Acoustics, 69, 11, 1017-1037.
  • 8. Chiu M.C., Chang Y.C. (2008), Shape optimization of multi-chamber cross-flow mufflers by SA optimization, J. Sound Vib., 312, 526-550.
  • 9. Chiu M.C. (2009), SA optimization on multi-chamber mufflers hybridized with perforated plug-inlet under space constraints, Archives of Acoustics, 34, 3, 305-343.
  • 10. Chiu M.C. (2010a), Numerical assessment of reverseflow mufflers using a simulated annealing method, The Canadian Society for Mechanical Engineering (CSME) Transactions, 34, 1, 17-35.
  • 11. Chiu M.C. (2010b), Optimal design of multi-chamber mufflers hybridized with perforated intruding inlets and resonated tube using simulated annealing, ASME J. of Vibration and Acoustics, 132, 1-10.
  • 12. Chiu M.C. (2010c), Shape optimization of multichamber mufflers with plug-inlet tube on a venting process by genetic algorithms, Applied Acoustics, 71, 495-505.
  • 13. Chiu M.C. (2011a), Numerical assessment of hybrid mufflers on a venting system within a limited back pressure and space using simulated annealing, J. of Low Frequency Noise, Vibration and Active Control, 30, 4, 247-275.
  • 14. Chiu M.C. (2011b), Optimization design of hybrid mufflers on broadband frequencies using the genetic algorithm, Archives of Acoustics, 36, 4, 795-822.
  • 15. Chiu M.C. (2012), Genetic algorithm optimization on a venting system with three-chamber hybrid mufflers within a constrained back pressure and space, ASME J. of Vibration and Acoustics, 134, 021005, 1-11.
  • 16. Cummings A. (1992), The effects of a resonator array on the sound field in a cavity, J. Sound Vib., 154, 1, 25-44.
  • 17. Dickey N.S., Selamet A. (1996), Helmholtz resonators: one-dimensional limit for small cavity lengthto-diameter ratios, J. Sound Vib., 195, 512-517.
  • 18. Doria A. (1995), Control of acoustic vibrations of an enclosure by means of multiple resonators, J. Sound Vib., 181, 4, 673-685.
  • 19. Fahy F.J., Schofield C. (1980), A note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure, J. Sound Vib., 72, 3, 365-378.
  • 20. Helmholtz H.V., von den L. (1877), Tonempfindungen, Vieweg Verlag, Braunschweig.
  • 21. Hsieh J.L. (2003), Attenuation of motorcycle intake Noise, Feng Chia University, Taiwan.
  • 22. Ingard U. (1953), On the theory and design of acoustic resonators, J. Acoust. Soc. Am., 25, 6, 1037-1061.
  • 23. Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983), Optimization by simulated annealing, Science, 220, 671-680.
  • 24. Leug P. (1936), Process of silencing sound oscillations, U. S. Patent, 2 043 416.
  • 25. Li D., Cheng L. (2007), Acoustically coupled model of an enclosure and Helmholtz resonator Array, J. Sound Vib., 305, 272-288.
  • 26. Lord J.W., Rayleigh S. (1945), The theory of sound, Dover Publicaions, Inc., New York.
  • 27. Metropolis A., Rosenbluth W., Rosenbluth M.N., Teller H., Teller E. (1953), Equation of static calculations by fast computing machines, The Journal of Chemical Physics, 21, 1087-1092.
  • 28. Munjal M.L. (1987), Acoustics of ducts and mufflers with application to exhaust and ventilation system design, John Wiley & Sons, New York.
  • 29. Olsen H.F., May E.G. (1953), Electronic sound absorber, J. Acoust. Soc. Am., 25, 1130-1136.
  • 30. Rayleigh L. (1896), Theory of sound II, Macmillan, London.
  • 31. Selamet J., Xu M.B., Lee I.J. (2005), Helmholtz resonator lined with absorbing material, J. Acoust. Soc. Am., 117, 2, 725-733.
  • 32. Sugimoto N. (1992), Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators, J. Fluid Mech., 244, 55-78.
  • 33. Sugimoto N., Horioka T. (1995), Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators, J. Acoust. Soc. Am., 97, 1446-1459.
  • 34. Tang S.K. (2005), On Helmholtz resonators with tapered necks, J. Sound Vib., 279, 1085-1096.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0074
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.