Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two vibrating circular membranes radiate acoustic waves into the region bounded by three infinite baffles arranged perpendicularly to one another. The Neumann boundary value problem has been inves- tigated in the case when both sources are embedded in the same baffle. The analyzed processes are time harmonic. The membranes vibrate asymmetrically. External excitations of different surface distributions and different phases have been applied to the sound sources’ surfaces. The influence of the radiated acoustic waves on the membranes’ vibrations has been included. The acoustic power of the sound sources system has been calculated by using a complete eigenfunctions system.
Wydawca
Czasopismo
Rocznik
Tom
Strony
463--473
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
autor
autor
- Department of Acoustics, Institute of Physics, University of Rzeszów al. Rejtana 16A, 35-310 Rzeszów, Poland, alpha@univ.rzeszow.pl
Bibliografia
- 1. Arase E.M. (1964), Mutual impedance of square and rectangular pistons in a rigid infinite baffle, Journal of the Acoustical Society of America, 36, 8, 1521-1525.
- 2. Brański A., Szela S. (2011), Evaluation of the active plate vibration reduction by the parameter of the acoustic field, Acta Physica Polonica A, 119, 6-A, 942-945.
- 3. Hasheminejad S.M., Azarpeyvand M. (2004), Sound radiation due to modal vibrations of a spherical source in an acoustic quarterspace, Shock and Vibration, 11, 625-635.
- 4. Huang Y.M., Hung S.C. (2011), Analytical study of an active piezoelectric absorber on vibration attenuation of a plate, Journal of Sound and Vibration, 330, 3, 361-373.
- 5. Kozień M.S., Kołtowski B. (2011), Comparison of active and passive damping of plate vibration by piezoelectric actuators - FEM simulation, Acta Physica Polonica A, 119, 6-A, 1005-1008.
- 6. Kozupa M., Wiciak J. (2010), Active vibration control of rectangular plate with distributed piezoelements excited acoustically and mechanically, Acta Physica Polonica A, 118, 1, 168-171.
- 7. Kozupa M.M., Wiciak W.J. (2011), Comparison of passive and active methods for minimization of sound radiation by vibrating circular plate, Acta Physica Polonica A, 119, 6-A, 1013-1017.
- 8. Lee H., Singh R. (1994), Analytical formulations for annular disk sound radiation using structural modes, Journal of the Acoustical Society of America, 95, 6, 3311-3323.
- 9. Leniowska L. (2009), Modelling and vibration control of planar systems by the use of piezoelectric actuators, Archives of Acoustics, 34, 4, 507 - 519.
- 10. Li S., Li X. (2008), The effects of distributed masses on acoustic radiation behavior of plates, Applied Acoustics, 69, 3, 272-279.
- 11. Mazur K., Pawełczyk M. (2011), Active Noise-Vibration Control Using the Filtered-Reference LMS Algorithm with Compensation of Vibrating Plate Temperature Variation, Archives of Acoustics, 36, 1, 65-76.
- 12. McLachlan N.W. (1955), Bessel Functions for Engineers, Clarendon Press, Oxford.
- 13. Meirovitch L. (1967), Analytical methods in vibration, Mac-Millan, New York.
- 14. Morse P.M., Feshbach H. (1953), Methods of theoretical physics, McGraw-Hill Book Company, Inc., New York.
- 15. Morse P.M., Ingard K.U. (1968), Theoretical acoustics, Princeton University Press, Princeton.
- 16. Pritchard R.L. (1960), Mutual acoustic impedance between radiators in an infinite rigid plane, Journal of the Acoustical Society of America, 32, 6, 730-737.
- 17. Rdzanek W.J., Rdzanek W.P. (2006a), Green function for the problem of sound radiation by a circular sound source located near two-wall corner and threewall corner, Archives of Acoustics, 31, 4, 99-106.
- 18. Rdzanek W.P., Rdzanek W.J., Szemela K. (2006b), An application of Green's function for acoustic radiation of a source located near the two wall corner, Archives of Acoustics, 31, 4, 107-113.
- 19. Rdzanek W.P., Rdzanek W., Szemela K. (2009), Acoustic power radiated into the quarter-space by a circular membrane with an asymmetric excitation, Archives of Acoustics, 34, 1, 75-94.
- 20. Rdzanek W.P., Szemela K. (2007), Reduction of the sound power radiated by a two piston system located near the three-wall corner, Archives of Acoustics, 32, 2, 339-350.
- 21. Rdzanek W.P., Szemela K., Pieczonka D. (2007), Sound pressure radiation of a circular piston located at a two- and three-wall corner, Archives of Acoustics, 32, 4, 883-893.
- 22. Rdzanek W.P., Szemela K., Pieczonka D. (2011), Acoustic pressure radiated by a circular membrane into the quarter-space, Archives of Acoustics, 36, 1, 121-139.
- 23. Szemela K., Rdzanek W.P., Pieczonka D. (2011), The total acoustic power of a clamped circular plate located at the boundary of three - wall corner region, Acta Physica Polonica A, 119, 6-A, 1050-1060.
- 24. Takahagi T., Nakai M., Tamai Y. (1995), Near field sound radiation from simply supported rectangular plates, Journal of Sound and Vibration, 185, 3, 455-471.
- 25. Trojanowski R., Wiciak J. (2010), Control of plates via LabVIEW and Piezoelectric elements, Acta Physica Polonica A, 118, 1, 168-171.
- 26. Witkowski P. (1997), The mutual impedance of two circular plates for high frequency wave radiation, Archives of Acoustics, 22, 4, 463-471.
- 27. Zagrai A., Donskoy D. (2005), A "soft table" for the natural frequencies and modal parameters of uniform circular plates with elastic edge support, Journal of Sound and Vibration, 287, 1-2, 343-351.
- 28. Zawieska W.M., Rdzanek W.P. (2007), The influence of a vibrating rectangular piston on the acoustic power radiated by a rectangular plate, Archives of Acoustics, 32, 2, 405-415.
- 29. Zhang X., LiW.L. (2010), A unified approach for predicting sound radiation from baffled rectangular plates with arbitrary boundary conditions, Journal of Sound and Vibration, 329, 25, 5307-5320.
- 30. Zou D., Crocker M.J. (2009a), Response of a plate to PZT actuators, Archives of Acoustics, 34, 1, 13-23.
- 31. Zou D., Crocker M.J. (2009b), Sound power radiated from rectangular plates, Archives of Acoustics, 34, 1, 25-39.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0071