PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design, Manufacture and Characterization of an Acoustic Barrier Made of Multi-Phenomena Cylindrical Scatterers Arranged in a Fractal-Based Geometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work we present the design and the manufacturing processes, as well as the acoustics standard- ization tests, of an acoustic barrier formed by a set of multi-phenomena cylindrical scatterers. Periodic arrangements of acoustic scatterers embedded in a fluid medium with different physical properties are usually called Sonic Crystals. The multiple scattering of waves inside these structures leads to attenuation bands related to the periodicity of the structure by means of Bragg scattering. In order to design the acoustic barrier, two strategies have been used: First, the arrangement of scatterers is based on fractal geometries to maximize the Bragg scattering; second, multi-phenomena scatterers with several noise con- trol mechanisms, as resonances or absorption, are designed and used to construct the periodic array. The acoustic barrier reported in this work provides a high technological solution in the field of noise control.
Rocznik
Strony
455--462
Opis fizyczny
Bibliogr. 25 poz., fot., wykr.
Twórcy
autor
Bibliografia
  • 1. Berenguer JP. (1994), A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200.
  • 2. Castiñeira-Ibáñez S., Romero-Garcıá V., Sánchez-Pérez J.V., Garcıá-Raffi L.M. (2010), Overlapping of acoustic bandgaps using fractal geometries, EPL, 92, 24007.
  • 3. Chen YY., Ye Z. (2001), Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays, Phys. Rev. E, 64, 036616.
  • 4. Department of Transportation, Federal Highway Administration U.S.A. (2001), Keeping the Noise Down. Highway Traffic Noise Barriers, Washington, 2001 FHWA-EP-01-004 HEPN/2-01 (10M)E.
  • 5. European Committee for Standardisation, EN 1793-1 (1997), Road Traffic Noise Reducing Devices - Test Method for Determining the Acoustic Performance Part 1: Intrinsic characteristics of sound absorption, CEN, Brussels, Belgium.
  • 6. European Committee for Standardisation, EN 1793-2 (1997), Road Traffic Noise Reducing Devices - Test Method for Determining the Acoustic Performance - Part 2: Intrinsic characteristics of airborne sound insulation under diffuse sound field conditions, CEN, Brussels, Belgium.
  • 7. European Committee for Standardisation, EN 1793-3 (1997), Road Traffic Noise Reducing Devices - Test method for Determining the Acoustic Performance - Part 3: Normalised Traffic Noise Spectrum, CEN, Brussels, Belgium.
  • 8. Harris CM. (1991), Handbook of acoustical measurements and noise control, 3rd ed. McGraw-Hill.
  • 9. Hu X., Chan C. (2005), Two-dimensional sonic crystals with Helmholtz resonators, Physical Review E, 71, 055601R.
  • 10. International Organization for Standardization (ISO) 9613-1:1993 (1993) - Acoustics - Attenuation of sound during propagation outdoors - Part 1: Calculation of the absorption of sound by the atmosphere.
  • 11. International Organization for Standardization (ISO) 11654:1997 (1997) - Acoustics - Sound absorbers for use in buildings - Rating of sound absorption.
  • 12. International Organization for Standardization (ISO) 354:2003 (2003) - Acoustics - Measurement of sound absorption in a reverberation room.
  • 13. International Organization for Standardization (ISO) 10140:2010 (2010) - Acoustics - Laboratory measurement of sound insulation of building elements.
  • 14. Kushwaha M. (1997), Stop-bands for periodic metallic rods: Sculptures that can filter the noise, Appl. Phys. Lett., 70, 3218.
  • 15. Lassas M., Somersalo E. (1998), On the existence and convergence of the solution of PML equations, Computing, 60, 228-241.
  • 16. Liu QH. (1999), Perfectly matched layers for elastic waves in cylindrical and spherical coordinates, J. Acoust. Soc. Am., 105, 2075-2084.
  • 17. Maekawa Z. (1968), Noise reduction by screens, Appl. Acoust., 1, 157-173.
  • 18. Mandelbrot B. (1983), The Fractal Geometry of the Nature, W.H. Freeman & Co., New York.
  • 19. Martıez-Sala R., Sancho J., Sánchez-Pérez J.V., Gómez V., Llinares J., Meseguer F. (1995), Sound attenuation by sculpture, Nature, 378, 241.
  • 20. Movchan A.B., Guenneau S. (2004), Split-ring resonators and localized modes, Phys. Rev. B, 70, 125116.
  • 21. Romero-Garcıa V., Sánchez-Pérez J.V., Garcıa-Raffi L.M., Herrero J.M., Garcıa-Nieto S., Blasco J. (2009), Hole distribution in photonic crystals: Design and optimization, Acoust. Soc. Am., 125, 6, 3774-3783.
  • 22. Romero-Garcıa V., Sánchez-Pérez J.V., Garcia-Raffi L.M. (2011a), Tunable wideband bandstop acoustic filter based on two dimensional multiphysical phenomena periodic systems, J. Appl. Phys., 110, 014904.
  • 23. Romero-Garcıa, V., Krynkin A., Garcıa-Raffi L.M., Umnova O., Sánchez-Pérez J.V. (2011b), Multi-resonant scatterers in Sonic Crystals: Locally Multi-resonant Acoustic Metamaterial, preprint arXiv: 1103.6283v1.
  • 24. Sánchez-Pérez J.V., Rubio C., Martínez-Sala R., Sánchez-Grandia R., Gómez V. (2002), Acoustic barriers based on periodic arrays of scatterers, Appl. Phys. Lett., 81, 5240.
  • 25. Umnova O., Attenborough K., Linton C.M. (2006), Effects of porous covering on sound attenuation by periodic arrays of cylinders, J. Acoust. Soc. Am., 119, 1, 278.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.