PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Acoustic Impedance of a Vibrating Annular Piston Located on a Flat Rigid Baffle Around a Semi-Infinite Circular Rigid Cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The axisymmetric problem of acoustic impedance of a vibrating annular piston embedded into a flat rigid baffle concentrically around a semi-infinite rigid cylindrical circular baffle has been undertaken in this study. The Helmholtz equation has been solved. The Green’s function valid for the zone considered has been used for this purpose. The influence of the semi-infinite cylindrical baffle on the piston’s acoustic impedance has been investigated. The acoustic impedance has been presented in both forms: integral and asymptotic, both valid for the steady harmonic vibrations. Additionally, the acoustic impedances of the piston with and without the cylindrical baffle have been compared to one another. In the case without the cylindrical baffle some earlier results have been used.
Rocznik
Strony
411--422
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
autor
  • Department of Acoustics, Institute of Physics, University of Rzeszów, al. Rejtana 16c, 35-310 Rzeszów, Poland, wprdzank@univ.rzeszow.pl
Bibliografia
  • 1. Aarts R.M., Janssen A.J.E.M. (2003), Approximation of the Struve function H1 occurring in impedance calculations, Journal of the Acoustical Society of America, 113, 5, 2635-2637.
  • 2. Arenas J.P. (2008), Numerical computation of the sound radiation from a planar baffled vibrating surface, Journal of Computational Acoustics, 16, 3, 321-341.
  • 3. Bracewell R. (1999), The Fourier Transform and Its Applications, McGraw-Hill, New York.
  • 4. Faran J.J. (1951), Sound scattering by solid cylinders and spheres, Journal of the Acoustical Society of America, 23, 4, 405-418.
  • 5. Fedoryuk M.V. (1987), Asymptotics: Integrals and Series [in Russian], Nauka, Moscow.
  • 6. Greenspon J.E., Sherman C.H. (1964), Mutual radiation impedance and near-field pressure for pistons on a cylinder, Journal of the Acoustical Society of America, 36, 1, 149-153.
  • 7. Hasheminejad S.M., Alibakhshi M.A. (2006), Ultrasonic scattering from compressible cylinders including multiple scattering and thermoviscous effects, Archives of Acoustics, 31, 2, 243-263.
  • 8. Hashimoto N. (2001), Measurement of sound radiation efficiency by the discrete calculation methods, Applied Acoustics, 62, 429-446.
  • 9. Kozień M., Wiciak J. (2009), Choosing of optimal voltage amplitude of four pairs square piezoelectric elements for minimization of acoustic radiation of vibrating plate, Acta Physica Polonica A, 116, 3, 348-350.
  • 10. Kozupa M.M., Wiciak J.W. (2011), Comparison of passive and active methods for minimization of sound radiation by vibrating clamped plate, Acta Physica Polonica A, 119, 6-A, 1013-1017.
  • 11. Lee H., Singh R. (2005), Acoustic radiation from outof-plane modes of an annular disk using thin and thick plate theories, Journal of Sound and Vibration, 282, 313-339.
  • 12. Leniowska L. (2008), Influence of damping and fluid loading on the plate vibration control, Archives of Acoustics, 33, 4, 531-540.
  • 13. Levine H., Leppington F.G. (1988), A note on the acoustic power output of a circular plate, Journal of Sound and Vibration, 121, 2, 269-275.
  • 14. Martin P.A. (2011), Multiple scattering by random configurations of circular cylinders: Reflection, transmission, and effective interface conditions, Journal of the Acoustical Society of America, 129, 4, 1685-1695.
  • 15. Merriweather A.S. (1969), Acoustic radiation impedance of a rigid annular ring vibrating in an infinite rigid baffle, Journal of Sound and Vibration, 10, 3, 369-379.
  • 16. Morse P.M., Ingard K.U. (1968), Theoretical acoustics, McGraw-Hill, Inc.
  • 17. RdzanekW.J. (1992), Mutual impedance of a circular plate for axially-symmetric free vibrations at high frequency of radiating waves, Archives of Acoustics, 17, 3, 439-448.
  • 18. RdzanekW.P., RdzanekW.J., Rż?cka A. (2007), The Green function for the Neumann boundary value problem at the semiinfinite cylinder and the flat infinite baffle, Archives of Acoustics, 32, 4 Supplement, 7-12.
  • 19. RdzanekW.P., Rdzanek W.J., Szemela K. (2010), Asymptotic approximation of the modal acoustic impedance of a circular membrane, Journal of Computational Acoustics, 18, 4, 335-362.
  • 20. Rdzanek W.P., Szemela K., Pieczonka D. (2011), Acoustic pressure radiated by a circular membrane into the quarter-space, Archives of Acoustics, 36, 1, 121-139.
  • 21. Robey D.H. (1955), On the radiation impedance of an array of finite cylinders, Journal of the Acoustical Society of America, 27, 4, 706-710.
  • 22. Rubinowicz A. (1971), A sharpened formulation of Sommerfeld's radiation condition for Green's functions of the Helmholtz equation, Reports on Mathematical Physics, 2, 2, 93-98.
  • 23. Stanton T.K. (1992), Sound scattering by rough elongated elastic objects: I. Means of scattered field, Journal of the Acoustical Society of America, 92, 3, 1641-1664.
  • 24. Stepanishen P.R. (1974), Impulse response and radiation impedance of an annular piston, Journal of the Acoustical Society of America, 56, 2, 305-312.
  • 25. Szemela K., Rdzanek W.P., Pieczonka D. (2011), The total acoustic power of a clamped circular plate located at the boundary of three-wall corner region, Acta Physica Polonica A, 119, 6-A, 1050-1060.
  • 26. Thompson Jr. W. (1967), Evaluation of Robey's first reactance integral for small ka, Journal of the Acoustical Society of America, 42, 4, 870-872.
  • 27. Thompson Jr. W. (1971), The computation of self- and mutual-radiation impedances for annular and elliptical pistons using Bouwkamp's integral, Journal of Sound and Vibration, 17, 2, 221-233.
  • 28. Watson G.N. (1944), A treatise on the theory of Bessel functions, Cambridge University Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.