PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemiczne aspekty celowanej terapii przeciwnowotworowej II. Połączenia nośnik -lek

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chemical aspects of targeted anticancer therapy II . Bond of carrier to drug
Języki publikacji
PL
Abstrakty
EN
Traditional anticancer therapy is usually low effective. Popular and common drugs applied in anticancer therapy are characterized by low solubility and nonspecific biodistribution in an organism. The chemotherapy kills not only cancer but also healthy cells [4]. Building of modern drug delivery systems based on nanocarriers is a new method of anticancer treatment. The present study is directed towards nanomaterials (as carbon nanotubes, liposomes, polymeric micelles) as modern drug carriers. Thus, we characterized mechanisms of actions of traditional chemotherapeutics: paclitaxel, cisplatin and doxorubicin (Figs. 3–5) [1, 15, 21]. The purpose of this study is a description of the bioconjugation of drug-nanocarrier. Chemotherapeutics can be connected to external or internal surfaces of nanocarriers (Fig. 6) [6]. We described two main methods of drug delivery from internal space of nanocarriers: nanoextraction and nanocondensation (Fig. 7) [32]. The type of drug-carrier bonding can be covalent or noncovalent. We report recent advances in the field showing the formation of esters (Figs. 10–11) [28, 29, 53, 54], acethylhydrazone (Fig. 12) [55–61], amides [62–64], and disulfides groups [12, 65]. These reactions depend on functional groups in structures of drugs and require suitable modification of nanocarrier surfaces. In practice, the functionalization of nanocarrier surface is associated with the covering with polymers including PE G, HPMA, PG and PL GA [3]. Adsorption is the most popular process of bonding chemotherapeutic and nanomaterials (Fig. 13) [66]. Special attention is paid to electrostatic interaction between drugs: paclitaxel [74], cisplatin [59, 76, 77], doxorubicin [67–73] and nanocarriers: carbon nanotubes and/or polymeric micells. By application of modern anticancer therapy, drugs are preserved from lysosomal degradation and to fast reaction in biological environment. Finally, nanocarriers improve adsorption of drug and increase concentration of drug only in cancer tissues [6, 7].
Rocznik
Strony
637--670
Opis fizyczny
Bibliogr. 83 poz., rys., schem., tab.
Twórcy
autor
autor
autor
autor
  • Wydział Chemii Uniwersytetu Mikołaja Kopernika w Toruniu, Katedra Chemii Materiałów, Adsorpcji i Katalizy, Zespół Fizykochemii Materiałów Węglowych,, aterzyk@chem.uni.torun.pl
Bibliografia
  • [1] R. Panchagnula, Int. J. Pharm., 1998, 172, 1.
  • [2] L . Brannon-Peppas, J.O. Blanchette, Adv. Drug Deliv. Rev., 2004, 56, 1649.
  • [3] R. Sinha, G.J. Kim, S. Nie, D.M. Shin, Mol. Cancer Ther., 2006, 5, 1909.
  • [4] A . Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Chem. Commun., 2005, 5, 571.
  • [5] L. Juillerat-Jeanneret, Drug Discov. Today, 2008, 13, 1099.
  • [6] D . Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nature Nanotech., 2007, 2, 751.
  • [7] V . Torchilin, Imperial College Press, London, 2006, 1, 1.
  • [8] G.A. Hughes, Nanomedicine: Nanotechn., Biol. Med., 2005, 1, 22.
  • [9] D .R. Khan, J. Cancer Sci. Ther., 2010, 2, 058.
  • [10] R. Singh, J.W. Lillard, Exp. Molec. Path., 2009, 86, 215.
  • [11] S . Aryal, C.M.J. Hu, L. Zhang, Small, 2010, 13, 1442.
  • [12] K .R. West, S. Otto, Curr. Drug Disc. Tech., 2005, 2, 123.
  • [13] K .M. Werengowska, M. Wiśniewski, A.P. Terzyk, N. Gurtowska, T.A. Drewa, Wiad. Chem., 2011, 65, 887.
  • [14] E . Pawełczyk, M. Zając, Akademia Medyczna im. Karola Marcinkowskiego, Poznań, 1995, 5-7, 340.
  • [15] G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni, Pharmacol. Rev., 2004, 56, 185.
  • [16] J . Verweij, M. Clavelf, B. Chevalier, Annals of Oncology, 1994, 5, 495.
  • [17] L .M. Pasetto, M.R. D'Andrea, A.A. Brandes, E. Rossi, S. Monfardini, Crit. Rev. Oncol. Hematol., 2006, 60, 59.
  • [18] G. Pastorin, W. Wu, S. Wieckowski, J.P. Briand, K. Kostarelos, M. Prato, A. Bianco, Chem. Commun., 2006, 11, 1182.
  • [19] Y . Ren, G. Pastorin, Adv. Mater., 2008, 20, 2031.
  • [20] A . Sparreboom, C.D. Scripture, V. Trieu, Clin. Cancer Res., 2005, 11, 4136.
  • [21] L . Kelland, Nature Rev., 2007, 7, 573.
  • [22] C . Tripisciano, E. Borowiak-Palen, Phys. Stat. Sol. (b), 2008, 10, 1979.
  • [24] K . Malinowska, R. Modranka, J. Kędziora, Pol. Merk. Lek., 2007, 23, 165.
  • [25] A .A. Bhirde, A.A. Sousa, V. Patel, A.A. Azari, J.S. Gutkind, R.D Leapman, J.F Rusling, Nanomedicine (Lond), 2009, 4, 763.
  • [26] A . Sparreboom, K. Nooter, J. Verweij, John Wiley & Sons, Ltd., 2002, 84E,1333.
  • [27] E . Czeczuga-Semeniuk, S. Wołczyński, M. Dąbrowska, J. Dzięcioł, T. Anchim, Folia Histochem. Cytobiol., 42, 221.
  • [28] H.S. Yoo, K.H. Lee, J.E. Oh, T.G. Park, J. Control. Release, 2000, 68, 419.
  • [29] H.S. Yoo, J.E. Oh, K.H. Lee, T.G. Park, Pharm. Res., 1999, 16, 1114.
  • [30] S .K. Vashist, D. Zheng, G. Pastorin, K. Al-Rubeaan, J.H.T. Luong, F.S. Sheu, Carbon, 2011, 49, 4077.
  • [31] T .A. Hilder, J.M. Hill, Small, 2009, 5, 300.
  • [32] M . Yudasaka, K. Ajima, K. Suenaga, T. Ichihashi, A. Hashimoto, S. Iijima, Chem. Phys. Lett., 2003, 380, 42.
  • [33] C . Tripisciano, K. Kraemer, A. Taylor, E. Borowiak-Palen, Chem. Phys. Lett., 2009, 478, 200.
  • [34] C . Tripiscianoa, S. Costa, R.J. Kalenczuk, E. Borowiak-Palen, Eur. Phys. J. (b), 2010, 75, 141.
  • [35] E .C. Gryparis, M. Hatziapostolou, E. Papadimitriou, K. Avgoustakis, Eur. J. Pharm Biopharm.,2007, 67, 1.
  • [36] N . Nishiyama, K. Kataoka, J. Control. Release, 2001, 74, 83.
  • [37] Y . Mizumura, Y. Matsumura, T. Hamaguchi, N. Nishiyama, K. Kataoka, T. Kawaguchi, W.J.M. Hrushesky, F. Moriyasu, T. Kakizoe, Jpn. J. Cancer Res., 2001, 92, 328.
  • [38] A . Schroeder , R. Honen, K. Turjeman, A. Gabizon, J. Kost, Y. Barenholz, J. Control. Release, 2009, 137, 63.
  • [39] M .S. Newman, G.T. Colbern, P.K. Working, C. Engbers, M.A. Amantea, Cancer Chemother. Pharmacol., 1999, 43, 1.
  • [40] S . Hampel, D. Kunze, D. Haase, K. Kramer, M. Rauschenbach, M. Ritschel, A. Leonhardt, J. Thomas, S. Oswald, V. Hoffmann, B. Buchner, Nanomedicine (Lond), 2008, 3, 175.
  • [41] S . Mitra, U. Gaur, P.C. Ghosh, A.N. Maitra, J. Control. Release, 2001, 74, 317.
  • [42] F . Lince, S. Bolognesi, B. Stella, D.L. Marchisio, F. Dosio, Chem. Eng. Res. Des., 2011, 89, 2410.
  • [43] H. Park, J. Yang, J. Lee, S. Haam, I.H. Choi, K.H. Yoo, ACS Nano, 2009, 3, 2919.
  • [44] Y . Matsumura, M. Gotoh, K. Muro, Y. Yamada, K. Shirao, Y. Shimada, M. Okuwa, S. Matsumoto, Y. Miyata, H. Ohkura, K. Chin, S. Baba, T. Yamao, A. Kannami, Y. Takamatsu, K. Ito, K. Takahashi, Annals of Oncology, 2004, 15, 517.
  • [45] A .A. Gabizon, Cancer Invest., 2001, 19, 424.
  • [46] K . Kataokaa , T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G.S. Kwon, , J. Control. Release, 2000, 64, 143.
  • [47] J .M. Koziara, P.R. Lockman, D.D. Allen, R.J. Mumper, J. Control. Release, 2004, 99, 259.
  • [48] G. Ruan, S.S. Feng, Biomaterials, 2003, 24, 5037.
  • [49] C . Fonseca, S. Simoes, R. Gaspar, J. Control. Release, 2002, 83, 273.
  • [50] T . Hamaguchi, K. Kato, H. Yasui, C. Morizane, M. Ikeda, H. Ueno, K. Muro, Y. Yamada, T. Okusaka, K. Shirao, Y. Shimada, H. Nakahama, Y. Matsumura, Br. J. Cancer, 2007, 97, 170.
  • [51] T .Y. Kim, D.W. Kim, J.Y. Chung, S.G. Shin, S.C. Kim, D.S. Heo, N.K. Kim, Y.J. Bang, Clin. Cancer Res., 2004, 10, 3708.
  • [52] Z . Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai, Materials Today, 2011, 14, 316.
  • [53] C . Li, R.A. Newman, Q.P. Wu, S. Ke, W. Chen, T. Hutto, Z. Kan, M.D. Brannan, C.C.S. Wallance, Cancer Chemother. Pharmacol., 2000, 46, 416.
  • [54] L . Milas, K.A. Mason, N. Hunter, C. Li, and S. Wallace, Int. J. Radiation Oncology Biol. Phys., 2003, 55, 707.
  • [55] T . Etrych, T. Mrkvan, P. Chytil, C. Koň疚, B. Ř劜ov , K. Ulbrich, J. Appl. Polymer Sci., 2008, 109, 3050.
  • [56] M . Hrubry, C. Koňák, K. Ulbrich, J. Control. Release, 2005, 103, 137.
  • [57] D . Vetvicka, M. Hruby, O. Hovorka, T. Etrych, M. Vetrik, L. Kovar, M. Kovar, K. Ulbrich, B. Rihova, Bioconjugate Chem., 2009, 20, 2090.
  • [58] H.S. Yoo, E.A. Lee, T.G. Park, J. Control. Release, 2002, 82, 17.
  • [59] S . Aryal, C.M.J. Hu, L. Zhang, ACS Nano., 2010, 4, 251.
  • [60] E . Tsai, Cosmos, 2011, 8, 1.
  • [61] P .C.A. Rodrigues, K. Scheuermann, C. Stockmar, G. Maier, H.H. Fiebig, C. Unger, R. Mülhaupt, F. Kratza, Bioor. Med. Chem. Lett., 2003, 13, 355.
  • [62] R .P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, J. Am. Chem. Soc., 2007, 129, 8438
  • [63] Z . Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Cancer Res, 2008, 68, 6652.
  • [64] P .S. Lai, P.J. Lou, C.L. Peng, C.L. Pai, W.N. Yen, M.Y. Huang, T.H. Young, M.J. Shieh, J. Control. Release, 2007, 122, 39.
  • [65] J . Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima, J. Am. Chem. Soc. 2008, 130, 16778.
  • [66] L . Wang, W. Zhao, W. Tan, Nano Res., 2008, 1, 99.
  • [67] K . Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G.S. Kwon, J. Control. Release, 2000, 64, 143.
  • [68] K . Greish, T. Sawa, J. Fang, T. Akaike, H. Maeda, J. Control. Release, 2004, 97, 219.
  • [69] H. Ali-Boucetta, K.T. Al-Jamal, D. McCarthy, M. Prato, A. Biancoc, K. Kostarelos, Chem. Commun., 2008, 4, 459.
  • [70] E . Heister, V. Neves, C. Tilmaciu, K. Lipert, V. Sanz Beltrán, H.M. Coley, S.R.P. Silva, J. McFadden, Carbon, 2009, 47, 2152.
  • [71] X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Biomaterials, 2009, 30, 6041.
  • [72] Z . Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, ACS Nano, 2007, 1, 50.
  • [73] A . Di Crescenzo, D. Velluto, J.A. Hubbell, A. Fontana, Nanoscale, 2011, 3, 925.
  • [74] Z . Tian, Y. Shi, M. Yin, H. Shen, N. Jia, Nano Biomed. Eng., 2011, 3, 155.
  • [75] B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C.L. Bianchi, D. Walsh, S. Mann, N. Roveri, Adv. Funct. Mater., 2007, 17, 2180.
  • [76] A . Barroug, L.T. Kuhn, L.C. Gerstenfeld, M.J. Glimcher, J Orthop. Res., 2004, 22, 703.
  • [77] Y. Li, S. Lim, C.P. Ooi, Pharm. Res., 2012, 29, 756.
  • [78] M . Arlt, D. Haase, S. Hampel, S. Oswald, A. Bachmatiuk, R. Klingeler, R. Schulze, M. Ritschel, A. Leonhardt, S. Fuessel, B. Bühner, K. Kraemer and M.P. Wirth, Nanotechnology, 2010, 21, 1.
  • [79] Y .I. Jeong, S.T. Kim, S.G. Jin, H.H. Ryu, Y.H. Jin, T.Y. Jung, I.Y. Kim, S. Jung, J. Pharm. Sci., 2008, 97, 1268.
  • [80] T .K. Bronich, A. Nehls, A. Eisenberg, V.A. Kabanov, A.V. Kabanov, Colloids Surf. B Biointerfaces, 1999, 16, 243.
  • [81] M . Foldvari, M. Bagonluri, Nanomedicine: Nanotechn., Biol. Med., 2008, 4, 183.
  • [82] L . Zhang, A.F. Radovic-Moreno, F. Alexis, F.X. Gu, P.A. Basto, V. Bagalkot, S. Jon, R.S. Langer, O.C. Farokhzad, ChemMedChem, 2007, 2, 1268.
  • [83] E .S. Kawasaki, A. Player, Nanomedicine: Nanotechn., Biol. Med., 2005, 1, 101.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.