PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biologiczne zastosowania nanoluminoforów domieszkowanych lantanowcami

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biological applications of lanthanide doped nanomarkers
Języki publikacji
PL
Abstrakty
EN
Fluorescence is one of the most commonly used methods of biodetection, mainly due to the high sensitivity, non-invasiveness, simplicity, and also due to the availability of the whole range of powerful light sources, a wide range of photodetectors, and numerous and sensitive measuring methods. From the point of view of biodetection and bioimaging, the important characteristics of such fluorophores are large Stokes shift, narrow absorption/emission lines as well as stable and efficient luminescence. Traditional organic dyes applied in biology reveal very fast photobleaching and limited opportunities for simultaneous detection of many biomolecules, what stimulate development of new fluorescent markers. Fast and intensive development of nanotechnology and chemical engineering observed in recent years, aims at designing the nanophosphors or luminescent nanoplatforms, that demonstrate desirable properties and devised functionality. However, new phosphors are not included yet in broad practical applications, mainly because of the need to adapt the measuring apparatus so as to fully exploit their potential. From among the fluorescent nano-particles, silica dye doped nanoparticles, quantum dots, nanocolloidal metallic nanoparticles, and lanthanide doped nanoluminophores show the largest application potential. This article discusses the unique physico-chemical properties of lanthanide doped nanoparticles, which beside very long luminescence lifetimes and narrow emission bands, enable to obtain a visible emission under the near infrared photoexcitation (called anti-Stokes emission), offering improved sensitivity, stability, repeatability and accuracy of the fluorescent biodetection and bioimaging methods. In this review, physico-chemical properties of lanthanide doped nanoluminophores and many examples of their biological applications have been discussed. The first chapter presents spectral characteristics of rare-earth ions with particular regard to the mechanism of energy transfer and up-conversion, which is a fundamental difference and the decisive advantage compared with other known fluorescent markers. The luminescent properties of lantanides are demonstrated based on the most commonly used nanomaterials singly doped with Eu^3+ and Tb^3+ and the codoped matrices, like Yb^3+-Tm^3+, Yb^3+-Er^3+or Yb^3+-Ho^3+ co-doped phosphores. The features of these materials are best suited from the point of view of biodetection and bioimaging. The next chapter gives an overview of the applications of lanthanide doped nanoluminophores in biological sciences. Different types of hetero-/homo-genous tests and luminesce based sensors for pH, CO_2, the level of glucose, and other analytes are presented. Then, basic aspects of bioimaging, photodynamic and thermo-therapy, nanotermometry as well as nano-bio-technology platforms have been summarized. In conclusion suggestions of new research directions and new biological applications of lanthanide doped nanoparticles have been presented.
Rocznik
Strony
393--443
Opis fizyczny
Bibliogr. 178 poz., rys., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] L . Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.T. Lee, Z. Liu, Angew. Chem. Int. Ed., 2011, 50, 7385.
  • [2] J.-L. Bridot, A.-C. Faure, S. Laurent, C. Riviere, C. Billotey, B. Hiba, M. Janier, V. Josserand, J.-L. C oll, L. Vander Elst, R. Muller, S. Roux, P. Perriat, O. Tillement, J. Am. Chem. Soc., 2007, 129, 5076.
  • [3] W.W. Yu, Y.A. Wang, X. Peng, Chem. Mater., 2003, 15, 4300.
  • [4] Y.H. Chang, D.T. Bau, Y.S. Lee, C.Y. Chen, H.J. Huang, F.J. Tsai, C.H. Tsai, C.Y.C. Chen, Adv. Mater. Res., 2009, 79-82, 565.
  • [5] J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, G. Borghs, J. Phys. Chem. C, 2009, 113, 3110.
  • [6] R .S. Meltzer, S.P. Feofilov, B. Tissue, H.B. Yuan, Phys. Rev. B, 1999, 60, 14012.
  • [7] J. Zhou, M. Yu, Y. Sun, X. Zhang, X. Zhu, Z. Wu, D. Wu, F. Li, Biomaterials, 2011, 32, 1148.
  • [8] F . Wang, W.B. Tan, Y. Zhang, X. Fan, M. Wang, Nanotechnology, 2006, 17, R1.
  • [9] M . Wang, G. Abbineni, A. Clevenger, C. Mao, S. Xu, Nanomedicine: NBM, 2011, 7, 710.
  • [10] A . Burns, H. Ow, U. Wiesner, Chem. Soc. Rev., 2006, 35, 1028.
  • [11] S . Santra, P. Zhang, K. Wang, R. Tapec, W. Tan, Anal. Chem., 2001, 73, 4988.
  • [12] S . Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, N. Zaccheroni, Angew. Chem. Int. Ed., 2011, 50, 4056.
  • [13] L . Wang, W. Tan, Nano Lett., 2005, 6, 84.
  • [14] S . Santra, D. Dutta, B.M. Moudgil, FBP, 2005, 83, 136.
  • [15] S .W. Bae, W. Tan, J.-I. Hong, Chem. Commun., 2011.
  • [16] L . Wang, W. Zhao, W. Tan, Nano Res, 2008, 1, 99.
  • [17] W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Curr. Opin. Biotechnol., 2002, 13, 40.
  • [18] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature, 2000, 404, 59.
  • [19] T .T. Tan, S.T. Selvan, L. Zhao, S. Gao, J.Y. Ying, Chem. Mater., 2007, 19, 3112.
  • [20] T . Jin, F. Fujii, E. Yamada, Y. Nodasaka, M. Kinjo, J. Am. Chem. Soc., 2006, 128, 9288.
  • [21] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science, 2005, 307, 538.
  • [22] D .K. Yi, S.T. Selvan, S.S. Lee, G.C. Papaefthymiou, D. Kundaliya, J.Y. Ying, J. Am. Chem. Soc., 2005, 127, 4990.
  • [23] X. Gao, S. Nie, J. Phys. Chem. B, 2003, 107, 11575.
  • [24] L . Shi, V. De Paoli, N. Rosenzweig, Z. Rosenzweig, J. Am. Chem. Soc., 2006, 128, 10378.
  • [25] J.H. Kim, S. Chaudhary, M. Ozkan, Nanotechnology, 2007, 18, 195105.
  • [26] F . Dubois, B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, J. Am. Chem. Soc., 2006, 129, 482.
  • [27] P . Yang, N. Murase, J. Yu, Colloids Surf., A, 2011, 385, 159.
  • [28] T . Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Rádler, G. Natile, W.J. Parak, Nano Lett., 2004, 4, 703.
  • [29] A .M. Derfus, W.C.W. Chan, S.N. Bhatia, Nano Lett., 2003, 4, 11.
  • [30] X. Gao, L. Yang, J.A. Petros, F.F. Marshall, J.W. Simons, S. Nie, Curr. Opin. Biotechnol., 2005, 16, 63.
  • [31] D .K. Chatterjee, A.J. Rufaihah, Y. Zhang, Biomaterials, 2008, 29, 937.
  • [32] L . Cheng, K. Yang, M. Shao, X. Lu, Z. Liu, Nanomedicine, 2011, 6, 1327.
  • [33] L . Xiong, T. Yang, Y. Yang, C. Xu, F. Li, Biomaterials, 2010, 31, 7078.
  • [34] A . Elsaesser, C.V. Howard, Adv. Drug Del. Rev., 2012, 64, 129.
  • [35] N . Lewinski, V. Colvin, R. Drezek, Small, 2008, 4, 26.
  • [36] F . Meiser, C. Cortez, F. Caruso, Angew. Chem. Int. Ed., 2004, 43, 5954.
  • [37] J. Shen, L.-D. Sun, C.-H. Yan, Dalton Trans., 2008, 5687.
  • [38] H .S. Mader, P. Kele, S.M. Saleh, O.S. Wolfbeis, Curr. Opin. Chem. Biol., 2010, 14, 582.
  • [39] L . Ding, H. Ju, J. Mater. Chem., 2011, 21, 18154.
  • [40] T . Ukonaho, T. Rantanen, L. Jámsen, K. Kuningas, H. Päkkilä, T. Lövgren, T. Soukka, Anal. Chim. Acta, 2007, 596, 106.
  • [41] T . Soukka, T. Rantanen, K. Kuningas, Ann. N.Y. Acad. Sci., 2008, 1130, 188.
  • [42] J.-C.G. Bünzli, Acc Chem Res, 2005, 39, 53.
  • [43] Y. Wang, X. Guo, T. Endo, Y. Murakami, M. Ushirozawa, J. Solid State Chem., 2004, 177, 2242.
  • [44] A . Mayer, S. Neuenhofer, Angew. Chem. Int. Ed. Engl., 1994, 33, 1044.
  • [45] T . Soukka, H. Härmä, Lanthanide Nanoparticules as Photoluminescent Reporters [w:] Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, P. Hänninen, H. Härmä (Ed.), Springer Ser Fluoresc (2011) 7: 89-114, DOI 10.1007/4243_2010_11, Springer-Verlag Berlin Heidelberg 2010, published online: 26 October 2010.
  • [46] F . Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, Analyst, 2010, 135, 1839.
  • [47] L .M. Maestro, E.M. Rodriguez, F. Vetrone, R. Naccache, H.L. Ramirez, D. Jaque, J.A. Capobianco, J.G. Sol , Opt. Express, 2010, 18, 23544.
  • [48] S . Heer, K. Kömpe, H.U. Güdel, M. Haase, Adv. Mater., 2004, 16, 2102.
  • [49] J.-C.G. Bünzli, S. Comby, A.-S. Chauvin, C.D.B. Vandevyver, J. Rare Earths, 2007, 25, 257.
  • [50] A . Bednarkiewicz, M. Mączka, W. Strek, J. Hanuza, M. Karbowiak, Chem. Phys. Lett., 2006, 418, 75.
  • [51] M .L. Debasu, D. Ananias, A.G. Macedo, J. Rocha, L.s.D. Carlos, J. Phys. Chem. C, 2011, 115, 15297.
  • [52] F . Auzel, Chem. Rev., 2003, 104, 139.
  • [53] F . Auzel, C.R. Acad. Sci., 1966, 262, 1016.
  • [54] Z. Hong-Lou, L. Ning, X. Da-Yuan, Z. Xu-Chang, L. Wei, L. Hui-Chun, Chin. Phys. Lett., 2005, 22, 1806.
  • [55] P .V. dos Santos, M.T. de Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, A.S.B. Sombra, Appl. Phys. Lett., 1998, 73, 578.
  • [56] H . Scheife, G. Huber, E. Heumann, S. Bär, E. Osiac, Opt. Mater., 2004, 26, 365.
  • [57] H .J. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R.S. Niedbala, H.J. Tanke, Anal. Biochem., 1999, 267, 30.
  • [58] K .W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. L・hi, Chem. Mater., 2004, 16, 1244.
  • [59] J.F. Suyver, J. Grimm, K.W. Krämer, H.U. Güdel, J. Lumin., 2005, 114, 53.
  • [60] H . Schäfer, P. Ptacek, K. Kömpe, M. Haase, Chem. Mater., 2007, 19, 1396.
  • [61] P . Il, J.H. Kim, K.T. Lee, K.-S. Jeon, H. Bin Na, J.H. Yu, H.M. Kim, N. Lee, S.H. Choi, S.-I. Baik, H. Kim, S.P. Park, B.-J. Park, Y.W. Kim, S.H. Lee, S.-Y. Yoon, I.C. Song, W.K. Moon, Y.D. Suh, T. Hyeon, Adv. Mater., 2009, 21, 4467.
  • [62] F . Auzel, Chem. Rev., 2004, 104, 139.
  • [63] S .A. Payne, C. Bibeau, J. Lumin., 1998, 79, 143.
  • [64] A .A. Kaminskiĭ, Crystalline lasers: physical processes and operating schemes, CRC Press Boca Raton 1996.
  • [65] J. Marie-France, Opt. Mater., 1999, 11, 181.
  • [66] F . Auzel, Y.H. Chen, J. Lumin., 1995, 65, 45.
  • [67] W.E. Case, M.E. Koch, A.W. Kueny, J. Lumin., 1990, 45, 351.
  • [68] N . Garnier, R. Moncorge, H. Manaa, E. Descroix, P. Laporte, Y. Guyot, J. Appl. Phys., 1996, 79, 4323.
  • [69] S . Guy, M.F. Joubert, B. Jacquier, C. Linares, Ann. Phys., 1995, 20, 117.
  • [70] M . Malinowski, A. Wnuk, Z. Frukacz, G. Chadeyron, R. Mahiou, S. Guy, M.F. Joubert, J. Alloys Compd., 2001, 323, 731.
  • [71] S . Xiao, L. Zhou, Q.Q. Wang, H. Deng, S.H. Yang, Chin. Phys. Lett., 2009, 26, 124209.
  • [72] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. Andersson-Engels, Acs Nano, 2011, 5, 3744.
  • [73] M . Wang, C. Mi, Y. Zhang, J. Liu, F. Li, C. Mao, S. Xu, J. Phys. Chem. C, 2009, 113, 19021.
  • [74] J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Krämer, H.U. Güdel, J. Lumin., 2006, 117, 1.
  • [75] F . Wang, D.K. Chatterjee, Z. Li, Y. Zhang, X. Fan, M. Wang, Nanotechnology, 2006, 17, 5786.
  • [76] W. Jiang, E. Papa, H. Fischer, S. Mardyani, W.C.W. Chan, Trends Biotechnol., 2004, 22, 607.
  • [77] Y.-C. Cao, Z.-L. Huang, T.-C. Liu, H.-Q. Wang, X.-X. Zhu, Z. Wang, Y.-D. Zhao, M.-X. Liu, Q.-M. Luo, Anal. Biochem., 2006, 351, 193.
  • [78] R .P. Bagwe, C. Yang, L.R. Hilliard, W. Tan, Langmuir, 2004, 20, 8336.
  • [79] J. Pichaandi, J.-C. Boyer, K.R. Delaney, F.C.J.M. van Veggel, J. Phys. Chem. C, 2011, 115, 19054.
  • [80] S . Majuru, M.O. Oyewumi, [w:] Nanotechnology in Drug Delivery, M.M. Villiers, P. Aramwit, G.S. Kwon (Eds), Springer New York, New York, 2009.
  • [81] T . Soukka, H. Härmä, J. Paukkunen, T. Lövgren, Anal. Chem., 2001, 73, 2254.
  • [82] J.-Q. Gu, J. Shen, L.-D. Sun, C.-H. Yan, J. Phys. Chem. C, 2008, 112, 6589.
  • [83] J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Anal. Chem., 2006, 78, 2918.
  • [84] C . Buzea, I.I. Pacheco, K. Robbie, Biointerphases, 2008, 4, MR17.
  • [85] C . Salthouse, S. Hildebrand, R. Weissleder, U. Mahmood, Opt. Express, 2008, 16, 21731.
  • [86] C .T. Xu, J. Axelsson, S. Andersson-Engels, Appl. Phys. Lett., 2009, 94, 251107.
  • [87] K . Kuningas, T. Rantanen, T. Ukonaho, T. Lgren, T. Soukka, Anal. Chem., 2005, 77, 7348.
  • [88] P . Corstjens, M. Zuiderwijk, A. Brink, S. Li, H. Feindt, R.S. Niedbala, H. Tanke, Clin. Chem., 2001, 47, 1885.
  • [89] P .L.A.M. Corstjens, L. van Lieshout, M. Zuiderwijk, D. Kornelis, H.J. Tanke, A.M. Deelder, G.J. van Dam, J. Clin. Microbiol., 2008, 46, 171.
  • [90] P . Zhang, W. Steelant, M. Kumar, M. Scholfield, J. Am. Chem. Soc., 2007, 129, 4526.
  • [91] F . Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, J.A. Capobianco, Acs Nano, 2010, 4, 3254.
  • [92] A . Bednarkiewicz, D. Wawrzynczyk, M. Nyk, W. Strek, Appl. Phys. B, 2011, 103, 847.
  • [93] C . Wang, L. Cheng, Z. Liu, Biomaterials, 2011, 32, 1110.
  • [94] C . Bouzigues, T. Gacoin, A. Alexandrou, Acs Nano, 2011, 5, 8488.
  • [95] L .P. Qian, L.H. Zhou, H.-P. Too, G.-M. Chow, J. Nanopart. Res., 2010, 13, 499.
  • [96] R .M. Petoral, F. Söderlind, A. Klasson, A. Suska, M.A. Fortin, N. Abrikossova, L.a. Selegard, P.-O. Käll, M. Engström, K. Uvdal, J. Phys. Chem. C, 2009, 113, 6913.
  • [97] K . Kuningas, T. Ukonaho, H. Päkkilä, T. Rantanen, J. Rosenberg, T. Lövgren, T. Soukka, Anal. Chem., 2006, 78, 4690.
  • [98] Y. Yang, Y. Qu, J. Zhao, Q. Zeng, Y. Ran, Q. Zhang, X. Kong, H. Zhang, Eur. J. Inorg. Chem., 2010, 2010, 5195.
  • [99] L . Wang, Y. Li, Chem. Eur. J., 2007, 13, 4203.
  • [100] L . Wang, P. Li, L. Wang, Luminescence, 2009, 24, 39.
  • [101] J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, F. Li, Biomaterials, 2010, 31, 3287.
  • [102] G . Zhang, Y. Liu, Q. Yuan, C. Zong, J. Liu, L. Lu, Nanoscale, 2011, 3, 4365.
  • [103] Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, C. Huang, J. Am. Chem. Soc., 2008, 130, 3023.
  • [104] H . Hu, L. Xiong, J. Zhou, F. Li, T. Cao, C. Huang, Chem. Eur. J., 2009, 15, 3577.
  • [105] M . Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, S.-K. Xu, Acs Nano, 2009, 3, 1580.
  • [106] D .K. Chatterjee, Z. Yong, Nanomedicine, 2008, 3, 73.
  • [107] Q. Chen, X. Wang, F. Chen, Q. Zhang, B. Dong, H. Yang, G. Liu, Y. Zhu, J. Mater. Chem., 2011, 21, 7661.
  • [108] J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, C. Mao, S. Xu, J. Mater. Chem., 2011, 21, 2632.
  • [109] S . Jiang, Y. Zhang, Langmuir, 2010, 26, 6689.
  • [110] Z. Tian, G. Chen, X. Li, H. Liang, Y. Li, Z. Zhang, Y. Tian, Lasers Med. Sc., 2009, 25, 479.
  • [111] X.F. Yu, L.D. Chen, M. Li, M.Y. Xie, L. Zhou, Y. Li, Q.Q. Wang, Adv. Mater., 2008, 20, 4118.
  • [112] T . Zako, H. Nagata, N. Terada, A. Utsumi, M. Sakono, M. Yohda, H. Ueda, K. Soga, M. Maeda, Biochem. Biophys. Res. Commun, 2009, 381, 54.
  • [113] M . Kamimura, D. Miyamoto, Y. Saito, K. Soga, Y. Nagasaki, Langmuir, 2008, 24, 8864.
  • [114] D . Casanova, C. Bouzigues, T.-L. Nguyen, R.O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J.-P. Boilot, P.-L. Tharaux, A. Alexandrou, Nat Nano, 2009, 4, 581.
  • [115] D .E. Achatz, R. Ali, O.S. Wolfbeis, [w:] Luminescence Applied in Sensor Science, L. Prodi, M. Montalti, N. Zaccheroni (Eds), Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
  • [116] D .K. Chatterjee, M.K. Gnanasammandhan, Y. Zhang, Small, 2010, 6, 2781.
  • [117] J. Shen, L.-D. Sun, C.-H. Yan, Dalton Trans., 2008, 5687.
  • [118] D . Vennerberg, Z. Lin, Sci. Adv. Mater., 2011, 3, 26.
  • [119] G . Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li, Y. Zhao, Adv. Mater., 2012, 24, 1226.
  • [120] N .B. Ramirez, A.M. Salgado, B. Valdman, Braz. J. Chem. Eng., 2009, 26,
  • [121] P .L. Corstjens, S. Li, M. Zuiderwijk, K. Kardos, W.R. Abrams, R.S. Niedbala, H.J. Tanke, IEE Proc. Nanobiotechnol., 2005, 152, 64.
  • [122] R .S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, R. Vallejo, Anal. Biochem., 2001, 293, 22.
  • [123] Z. Yan, L. Zhou, Y. Zhao, J. Wang, L. Huang, K. Hu, H. Liu, H. Wang, Z. Guo, Y. Song, H. Huang, R. Yang, Sens. Actuators, B, 2006, 119, 656.
  • [124] B.Y. Jung, S.C. Jung, C.H. Kweon, J. Food Prot., 2005, 68, 2140.
  • [125] H .S. Mader, M. Link, D.E. Achatz, K. Uhlmann, X. Li, O.S. Wolfbeis, Chem. Eur. J., 2010, 16, 5416.
  • [126] P .L. Corstjens, M. Zuiderwijk, M. Nilsson, H. Feindt, R. Sam Niedbala, H.J. Tanke, Anal. Biochem., 2003, 312, 191.
  • [127] G . Shan, H. Huang, D.W. Stoutamire, S.J. Gee, G. Leng, B.D. Hammock, Chem. Res. Toxicol., 2004, 17, 218.
  • [128] M . Nichkova, D. Dosev, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Chem., 2005, 77, 6864.
  • [129] K .E. Sapsford, L. Berti, I.L. Medintz, Angew. Chem. Int. Ed. Engl., 2006, 45, 4562.
  • [130] B. Herman, V.E. Centonze Frohlich, J.R. Lakowicz, T.J. Fellers, M.W. Davidson, Fluorescence Resonance Energy Transfer (FRET) Microscopy [online], Olympus FluoView Resource Center: FRET Introductory Concepts, [2012-05-23]. Dostępny w Internecie: http://www.olympusfluoview.com/applications/fretintro.html.
  • [131] L . Stryer, R.P. Haugland, PNAS , 1967, 58, 719.
  • [132] I . Hemmil , V. Laitala, J. Fluoresc., 2005, 15, 529.
  • [133] X. Xiao, J.P. Haushalter, K.T. Kotz, G.W. Faris, Biomed. Opt. Express, 2011, 2, 2255.
  • [134] J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev., 2005, 34, 1048.
  • [135] T . Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials, 2007, 28, 4717.
  • [136] M . Kumar, P. Zhang, Biosens. Bioelectron., 2010, 25, 2431.
  • [137] L . Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, Y. Li, Angew. Chem. Int. Ed., 2005, 44, 6054.
  • [138] M . Wang, W. Hou, C.-C. Mi, W.-X. Wang, Z.-R. Xu, H.-H. Teng, C.-B. Mao, S.-K. Xu, Anal. Chem., 2009, 81, 8783.
  • [139] T . Rantanen, M.-L. Järvenpää, J. Vuojola, K. Kuningas, T. Soukka, Angew. Chem. Int. Ed. Eng., 2008, 47, 3811.
  • [140] K . Kuningas, H. Pakkila, T. Ukonaho, T. Rantanen, T. Lovgren, T. Soukka, Clin. Chem., 2007, 53, 145.
  • [141] L .-N. Sun, H. Peng, M.I.J. Stich, D. Achatz, O.S. Wolfbeis, Chem. Commun., 2009,
  • [142] D .E. Achatz, R.J. Meier, L.H. Fischer, O.S. Wolfbeis, Angew. Chem. Int. Ed., 2011, 50, 260.
  • [143] R . Ali, S.M. Saleh, R.J. Meier, H.A. Azab, I.I. Abdelgawad, O.S. Wolfbeis, Sens. Actuators, B., 2010, 150, 126.
  • [144] H .S. Mader, O.S. Wolfbeis, Anal. Chem., 2010, 82, 5002.
  • [145] S .F. Lim, R. Riehn, W.S. Ryu, N. Khanarian, C.-k. Tung, D. Tank, R.H. Austin, Nano Lett., 2005, 6, 169.
  • [146] L . Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, Z. Liu, Nano Res., 2010, 3, 722.
  • [147] R . Abdul Jalil, Y. Zhang, Biomaterials, 2008, 29, 4122.
  • [148] L . Cheng, K. Yang, M. Shao, X. Lu, Z. Liu, Nanomedicine, London, England, 2011,
  • [149] A . Elsaesser, C.V. Howard, Adv. Drug Del. Rev. 64, 2012, 129.
  • [150] S . Hirano, K.T. Suzuki, Environ. Health Perspect., 1996, 104, 85.
  • [151] A . Xia, Y. Gao, J. Zhou, C.Y. Li, T.S. Yang, D.M. Wu, L.M. Wu, F.Y. Li, Biomaterials, 2011, 32, 7200.
  • [152] Q. Le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, P. Nat. Acad. Sci., 2007, 104, 9266.
  • [153] N .M. Idris, Z. Li, L. Ye, E.K. Wei Sim, R. Mahendran, P.C.-L. Ho, Y. Zhang, Biomaterials, 2009, 30, 5104.
  • [154] O . Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P.A. Curmi, F. T reussart, Small, 2008, 4, 2236.
  • [155] O . Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C.I. Gesset, J.-C. Arnault, A. Thorel, J.-P. Boudou, P.A. Curmi, F.o. Treussart, Acs Nano, 2009, 3, 3955.
  • [156] M . Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, A. Triller, Science, 2003, 302, 442.
  • [157] D . Lasne, G.A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, Biophys. J., 2006, 91, 4598.
  • [158] E . Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, A. Alexandrou, Nano Lett., 2004, 4, 2079.
  • [159] J.V. Moore, C.M.L. West, C. Whitehurst, Phys. Med. Biol., 1997, 42, 913.
  • [160] G .-I. Sengee, N. Badraa, Y.K. Shim, Int. J. Mol. Sci., 2008, 9, 1407.
  • [161] R . Allison, H. Mota, C. Sibata, Photodiag. Photodyn. Ther., 2004, 1, 263.
  • [162] A . Castano, T. Demidova, M. Hamblin, Photodiag. Photodyn. Ther., 2004, 1, 279.
  • [163] R . Allison,G. Downie, X.H. Hu, C. Childs, C. Sibata, Photodiag. Photodyn. Ther., 2004, 1, 27.
  • [164] T .J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer. Inst., 1998, 90, 889
  • [165] M . Olivo, R. Bhuvaneswari, S.S. Lucky, N. Dendukuri, P. Soo-Ping Thong, Pharmaceuticals, 2010, 3, 1507.
  • [166] B. Ungun, R.K. Prud'homme, S.J. Budijon, J. Shan, S.F. Lim, Y. Ju, R. Austin, Opt. Express, 2009, 17, 80.
  • [167] M . Suzuki, V. Tseeb, K. Oyama, S.i. Ishiwata, Biophys. J., 2007, 92, L46.
  • [168] J. Lee, N.A. Kotov, Nano Today, 2007, 2, 48.
  • [169] Z. Liu, Y. Bando, J. Hu, K. Ratinac, S.P. Ringer, Nanotechnology, 2006, 17, 3681.
  • [170] M .r.A.R.C. Alencar, G.S. Maciel, C.B. de Araújo, A. Patra, Appl. Phys. Lett., 2004, 84, 4753.
  • [171] M . Aldén, A. Omrane, M. Richter, G. Särner, Prog. Energy Combust. Sci., 2011, 37, 422.
  • [172] U. Hobohm, Cancer Immunology, Cancer Immunol. Immunother., 2001, 50, 391.
  • [173] P . Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P.M. Schlag, The Lancet Oncology, 2002, 3, 487.
  • [174] F .-Y. Cheng, C.-H. Su, P.-C. Wu, C.-S. Yeh, Chem. Commun., 2010, 46, 3167.
  • [175] D . Bechet, P. Couleaud, C.l. Frochot, M.-L. Viriot, F.o. Guillemin, M. Barberi-Heyob, Trends Biotechnol., 2008, 26, 612.
  • [176] Q. Liu, Y. Sun, C.G. Li, J. Zhou, C.Y. Li, T.S. Yang, X.Z. Zhang, T. Yi, D.M. Wu, F.Y. Li, ACS Nano, 2011, 5, 3146.
  • [177] A . Son, A. Dhirapong, D.K. Dosev, I.M. Kennedy, R.H. Weiss, K.R. Hristova, Anal. Bioanal. Chem., 2008, 390, 1829.
  • [178] V. Bergendahl, T. Heyduk, R.R. Burgess, Appl. Environ. Microb., 2003, 69, 1492.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.