PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Spaleniowa synteza nanoproszków wolframu, tantalu i molibdenu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Combustion synthesis of tungsten, tantalum, and molybdenum nanopowders
Języki publikacji
PL
Abstrakty
EN
Refractory metal nanopowders have recently been of interest as starting materials for preparation of heavy alloys with exceptionally good mechanical properties resulting from their structure homogeneity at a nanoscopic level. In the light of recently published papers, the combustion synthesis seems to be a promising technique for the large-scale production of metal nanopowders. In this method, the self-sustaining internal combustion of energetic composites is used to produce useful materials. The energy released in the combustion wave, propagating through a pressed sample of the green mixture, causes a rapid increase in temperature which in turns enables the processes and reactions with high activation barriers to proceed. Unbalanced conditions and high time and space variability of temperature in combustion wave are conducive to the creation of compounds and structures that are difficult to produce using other methods. Thanks to this combustion synthesis there is a source of simple and complex metal oxides, ceramic materials, metals and intermetallic compounds as well as various composites of the substances, both in powdery and compact forms. The product form and its microstructure depends on the synthesis conditions, especially on the size and morphology of substrate particles, reactants ratio, the initial density, the presence and concentration of additives, temperature and external pressure [1–6]. Metal powders are typically produced by reduction of relevant oxides. Aluminum, magnesium, zinc, calcium, zirconium, titanium, silicon, carbon and their mixtures or compounds are used as reducers [11]. If the combustion temperature is excessively high (above 2000°C) coarse metal powders are usually produced. The initially formed crystallites are irregular in shape, they melt on the surface and agglomerate giving even bigger particles. To overcome this problem, alkali metal halide is included as an additional reactant in the system. The additive melts in the combustion wave, reduces the combustion temperature, aids in transportation of the main reactant species, which positively affects the size and shape of combustion product particles. In addition, molten salt prevents grain growth by forming a protective layer around the particles. The current paper reviews recently published works (mainly by H.H. Nersisyan et al. [7, 12–23]) on molten salt assisted combustion synthesis (SACR ) of tungsten, tantalum and molybdenum nanopowders. A detailed description of the synthesis method including its specific features, the experimental procedure, combustion parameters and macro-kinetic aspects of chemical reactions in the combustion wave, and characterization of the metal nanopowders are presented.
Rocznik
Strony
249--272
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
autor
  • Wojskowa Akademia Techniczna, Instytut Chemii, Wydział Nowych Technologii i Chemii ul. gen. S. Kaliskiego 2, 00-908 Warszawa, scudzilo@wat.edu.pl
Bibliografia
  • [1] A .G. Merzhanov, Ceramics International, 1995, 21, 371.
  • [2] A . Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang, Adv. Chem. Eng., 1998, 24, 78.
  • [3] K.C. Patil, S.T. Aruna,T. Mimani, Curr. Opin. Solid State Mater. Sci., 2002, 6, 507.
  • [4] P . Mossino, Ceramics International, 2004, 30, 311.
  • [5] A .S. Mukasyan, P. Epstein, P. Dinka, Proc. Combust. Inst., 2007, 31(2), 1789.
  • [6] S .T. Aruna, A.S. Mukasyan, Curr. Opin. Solid State Mater. Sci., 2008, 12, 44.
  • [7] J .H. Lee. H.H. Nersisyan, C.W. Won, J. Solid State Chem., 2004, 177(1), 251.
  • [8] C . Farley, T. Turnbull, M.L. Pantoya, E.M. Hunt, Acta Materialia, 2011, 59, 2447.
  • [9] B .C. Tappan, S.A. Steiner III, E.P. Luther, Angew. Chem. Int. Ed., 2010, 49, 4544.
  • [10] B .C. Tappan, M.H. Huynh, M.A. Hiskey,. D.E. Chavez, E.P. Luther, J.T. Mang, and S.F. Son, J. Am. Chem. Soc., 2006, 128, 6589.
  • [11] C h.K. Gupta, Chemical Metallurgy: Principles and Practice, 2003, WILEY -VCH Verlag GmbH & Co. KGaA, Weinheim.
  • [12] H.H. Nersisyan, J.H. Lee, C.W. Won, J. Mater. Res., 2002, 17(11), 2859.
  • [13] C .W. Won, H.H. Nersisyan, H.J. Won, J.H. Lee, Curr. Opin. Solid State Mater. Sci., 2010, 14, 53.
  • [14] J .H. Lee, D.H. Seo, C.W. Won, J. Mater. Sci., 2001, 36, 5311.
  • [15] C .W. Won, J.C. Jung, S.G. Ko, J.H. Lee, Mater. Research Bull., 1999, 34(14/15), 2239.
  • [16] H.H. Nersisyan, J. H. Lee, C.W. Won, Comb. Flame, 2005, 142, 241.
  • [17] H. Won, H.H. Nersisyan, C.W. Won, Chemical Engineering Journal, 2009, 153, 193.
  • [18] H.H. Nersisyan, H. Won, C.W. Won, K.C. Cho, Powder Technology, 2009, 189, 422.
  • [19] H.H. Nersisyan, J.H. Lee, C.W. Won, Comb. Flame, 2003, 135, 539.
  • [20] H. Won, H.H. Nersisyan, C.W. Won, J. Alloys Comp., 2009, 478, 716.
  • [21] S . Cudziło, W. Trzciński, S. Dyjak, M. Czugała, Biul. WAT , 2008, 57(3), 39.
  • [22] H.H. Nersisyan, J.H. Lee, C.W. Won, Mater. Chem. Phys., 2005, 89, 283.
  • [23] S .K. Ko, C.W. Won, S.S. Chun, B.S. Chun, J. Mater. Sci., 2001, 36, 5311.
  • [24] D . Davtyan, K. Manukyan, R. Mnatsakanyan, S. Kharatyan, Int. J. Refractory Metals&Hard Materials, 2010, 28, 601.
  • [25] S .V. Aydinyan, Zh. Gumruyan, Kh.V. Manukyan, S.L. Kharatyan, Mater. Sci. Eng. B, 2010, 172, 267.
  • [26] A .A. Zenin, A.G. Mrezhanov, H.H. Nersisyan, Dokl. Akad. Nauk USSR , 1980, 250, 880.
  • [27] A .G. Merzhanov, Russ. Chem. Bull., 1997, 46, 1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.