PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biokatalityczne metody otrzymywania nieracemicznych alkoholi aryloallilowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biocatalytic methods for preparation of nonracemic arylallylic alcohols
Języki publikacji
PL
Abstrakty
EN
Different methods for preparing nonracemic arylallylic alcohols are presented in this work. A key feature was an application the biocatalyst as a mean to obtain final products. These compounds play an important role in pharmaceutical industry, because they are substrates in the synthesis of various important therapeutics [1–3]. Methods presented in this work are divided into five main groups: 1. enantioselective hydroxylation, 2. microbiological deracemization, 3. enzymatic kinetic resolution, 4. enzymatic dynamic kinetic resolution, 5. enantioselective reduction. First two methods use only microorganisms like bacteria [4, 5, 10], fungi [6–8] or yeasts [11] as biocatalysts. Owing to the metabolic processes in the cells it was possible to obtain nonracemic arylallylic alcohol (results for method 2 are presented in Table 1). Unfortunately, the data were insufficient to create direct correlation between values of enantiomeric excess and types of applied microorganisms. Methods 3 and 4 used only isolated enzymes as biocatalysts. They belong to two classes: hydrolases and oxidoreductases. Oxidoreductases were used in the enzymatic kinetic resolution based on the enantioselective oxidation [28] of one enantiomer of the racemic arylallylic alcohol. Nevertheless, hydrolases [12–27], mainly lipases, isolated from microorganisms are enzymes of common use in enzymatic kinetic resolution. Owing to this method it was possible to obtain final products with excellent enantioselectivity (results are presented in Tables 2 and 3). Because kinetic resolution and dynamic kinetic resolution are related processes, in most cases similar enzymes are used. The choice of lipases as biocatalysts for method 4 was caused by the fact that they are able to catalyze enantioselective transesterification of arylallylic alcohols or their acetates. Furthermore, racemization is very important factor for efficacy of dynamic kinetic resolution processes. In most cases they are catalyzed by different types of complexes based on palladium [30, 31] and ruthenium [32, 34]. Final products prepared by this method had very high enantiomeric excesses and yields up to 93% (results are presented in Tables 4 and 5). The only method, presented in this work, that allowed to use both enzymes [39–41] and microorganisms [35–38] as biocatalysts, was enantioselective reduction. This method allows to obtain nonracemic arylallylic alcohols with excellent enantiomeric excess and yields up to 85% (results are presented in Table 6). In summary, all methods presented in this work show the advantages of biocatalysis as an alternative route to traditional chemical method
Rocznik
Strony
93--118
Opis fizyczny
Bibliogr. 42 poz., schem., tab.
Twórcy
autor
  • Instytut Chemii Organicznej Polskiej Akademii Nauk ul. Kasprzaka 44/52, 01-224 Warszawa, rysza@icho.edu.pl
Bibliografia
  • [1] E. Brenna, C. Fuganti, P. Grasseli, S. Serra, Eur. J. Org. Chem., 2001, 7, 1349.
  • [2] E. Brenna, N. Carracia, C. Fuganti, D. Fuganti, P. Grasseli, Tetrahedron: Assymetry, 1997, 8, 3801.
  • [3] L. Zhu, J.P. Kedenburg, M. Xian, P.G. Wang, Tetrahedron Letters, 2005, 46, 811.
  • [4] Y. Chen, F. Lie, Z. Li, Adv. Synth. Catal., 2009, 351, 2107.
  • [5] W. Adam, Z. Lukacs, C. Kahle, C.R. Saha-Mler C, P. Schreier, Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 377.
  • [6] A. Uzura, T. Katsuragi, Y. Tani, J. Biosci. Bioeng., 2001, 92, 381.
  • [7] A. Uzura, T. Katsuragi, Y. Tani, 2001, 92, 288.
  • [8] A. Uzura, T. Katsuragi, Y. Tani, J. Biosci. Bioeng., 2001, 91, 217.
  • [9] B . Zwanenburg, M. Mikołajczyk, P. Kiełbasiński, Kluwer Academic: Dordrecht, The Netherlands, 2000, 12.
  • [10] G . Allan, A.J. Carnell, J. Org. Chem., 2001, 66, 6495.
  • [11] D. Titu, A. Chadha, Tetrahedron: Asym., 2008, 19, 1698.
  • [12] T. Itoh, Y. Matsushita, Y. Abe, S. Han, S. Wada, S. Hayase, M. Kawatsura, S. Takai, M. Morimoto, Y. Hirose, Chem. Eur. J., 2006, 12, 9228 .
  • [13] L. Borén, B. Martin-Matute, Y. Xu, A. Córdova, J-E. Bäckvall, Chem. Eur. J., 2006, 12, 225.
  • [14] Y. Zhang, J. Li, D. Han, H. Zhang, P. Liu, C. Li, Biochemical and Biophysical Research Communications, 2008, 365, 609.
  • [15] A. Kamal, M. Sandbohr, A.A. Shaik, Tetrahedron: Assymetry, 2003, 14, 2839.
  • [16] A. Córdova, K.D. Janda, J. Org. Chem., 2001, 66, 1906.
  • [17] Y. Tsukada, K. Iwamoto, H. Furutani, Y. Matsushita, Y. Abe, K. Matsumoto, K. Monda, S. Hayase, M. Kawatsura, T. Itoh, Tetrahedron Lett., 2006, 47, 1801.
  • [18] Y. Takagi, J. Teramoto, H. Kihara, T. Itoh, H. Tsukube, Tetrahedron Lett., 1996, 37, 4991.
  • [19] K . Burgess, L.D. Jennings, J. Am. Chem. Soc., 1990, 112, 7434.
  • [20] K . Burgess, L.D. Jennings, J. Am. Chem. Soc., 1991, 113, 6129.
  • [21] J . Ŝtambaskỳ, A. V. Malkov, P. Kočovskỳ, J. Org. Chem., 2008, 73, 9148.
  • [22] E. Lindner, A. Ghanem, I. Warad, K. Eichele, H.A. Mayer, V. Schurig, Tetrahedron: Asym., 2003, 14, 1045.
  • [23] B . Morgan, A.C. Oehlschlager, T.M. Stokes, J. Org. Chem., 1992, 57, 3231.
  • [24] L. Borén, B. Martin-Matute, Y. Xu, A. Córdova, J-E. Bäckvall, Chem. Eur. J., 2006, 12, 225.
  • [25] H. Shi-Hui, T. Hirakawa, T. Fukuba, S. Hayse, M. Kawatsura, T. Itoh, Tetrahedron: Asym., 2007, 18, 2484.
  • [26] C. Raminelli, J.V. Comasseto, L. Andrade, A. Porto, Tetrahedron: Asym., 2004, 15, 3117.
  • [27] E.N. Kadnikova, V.A. Thakor, Tetrahedron: Asym., 2008, 19, 1053.
  • [28] M.M. Musa, K.I. Ziegelmann-Fjeld, C. Vieille, J.G. Zeikus, R.S. Phillips, J. Org. Chem. 2007, 72, 30.
  • [29] K . Faber, Biotransfomations in organic chemistry, Springer-Verlag New York, 1998, 4th edition, str. 57.
  • [30] J . Williams, J.V. Allen, Tetrahedron Lett.,1996, 37, 1859.
  • [31] Y. Choi, J. Suh, D. Lee, I. Lim, J. Jung, M. Kim, J. Org. Chem., 1999, 64, 8423.
  • [32] J . Choi, Y. Choi, Y. Kim, E. Park, E. Kim, J. Park, J. Org. Chem., 2004, 69, 1972.
  • [33] B . Martin-Matute, M. Edin, K. Bogár, F.B. Kaynak, J-E. Bäckvall, J. Am. Chem. Soc. 2005, 127, 8817.
  • [34] R. Karvembu, R. Prabhakaran, M. Muthu Tamizh, K. Natarajan, C.R. Chimie, 2009, 12, 951.
  • [35] W. Stampfer, B. Kosjek, K. Faber, W. Kroutil, J. Org. Chem., 2003, 68, 402.
  • [36] R. van Deursen, W. Stampfer, K. Edegger, K. Faber, W. Kroutil, J. Mol. Catal.B: Enz., 2004, 31, 159.
  • [37] B . Kosjek, W. Stampfer, M. Pogorevc, W. Goessler, K. Faber, W. Kroutil, Biotechnol. Bioeng., 2004, 86, 55.
  • [38] A. Arnone, R. Berrnardi, F. Blasco, R. Cardillo, G. Resnati, Tetrahedron, 1998, 54, 2809.
  • [39] S. Sgalla, G. Fabrizi, R. Cirilli, A. Macone, A. Bonamore, A. Boffi, S. Cacchi, Tetrahedron: Asym., 2007, 18, 2791.
  • [40] M.M. Musa, K.I. Ziegelmann-Fjeld, C. Vieille, J.G. Zeikus, R.S. Phillips, J. Org. Chem. 2007, 72, 30.
  • [41] M. Krauser, W. Hummel, H. Gröger, Eur. J. Org. Chem., 2007, 5175.
  • [42] T. Zelinski, A. Liese, C. Wandrey, M.-R. Kula, Tetrahedron: Asym., 1999, 10, 1681.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.