PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioszkła i organiczno-nieorganiczne kompozyty dla inżynierii tkankowej kości

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bioglasses and organic-inorganic composites for bone tissue engineering
Języki publikacji
PL
Abstrakty
EN
The most demanded biomaterials for bone tissue engineering could be classified in two main sol-gel derived groups: bioglasses and organic-inorganic composites. The first of these include bioactive ceramics such as calcium phosphates (Tab. 2) [1], glasses and glass ceramics [2], and so-called inert ceramics (Tab. 1) such as Al2O3, zirconium and titanium dioxide, and carbon-based materials [3, 4]. Second-group of compounds constitute bioactive organic-inorganic hybrids, generally based on organic matrix and various inorganic dopants. Biomaterials in contact with human plasma and bone stem cells form, on their surface, hydroxyapatite Ca10(PO4)6(OH)2 (HAp) and its derivatives (Tab. 2). HAp-layer initiates bone growth and reconstruction of treated fragment (Fig. 2). These materials, due to the high degree of biocompability are considered as the most valuable compounds for bone surgery [5]. Extremely rapid development of biomaterials used in medicine caused the production of implants with different properties (Scheme 1). The real revolution and technological progress have brought biomimetic composites that mimic naturally occurring solutions in living organisms. The role of such implants is not only replacing the damaged parts of body, but – due to the appropriate morphology and composition – stimulating the growth of living cells (Fig. 3) and final bone regeneration. This article is devoted to this type of biomaterials proposed for bone tissue engineering.
Rocznik
Strony
21--39
Opis fizyczny
Bibliog. 59 poz., rys., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] T. Yamamuro, L.L. Hench, J. Wilson, Calcium phosphate and hydroxyapatite ceramics. Handbook of bioactive ceramics, vol. 2, Boca Raton, CRC Press, 1990.
  • [2] T. Yamamuro, L.L. Hench, J. Wilson, Calcium phosphate and hydroxyapatite ceramics. Handbook of bioactive ceramics, vol. 1, Boca Raton, CRC Press, 1990.
  • [3] M. Szycher, High performance biomaterials, Pennsylvania: Technomic, 1991.
  • [4] D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszemski, J.D. Gresser, E.R. Schwartz, Encyclopedic handbook of biomaterials and bioengineering, New York, Marcel Dekker, 1995.
  • [5] J .M. Polak, L.L. Hench, P. Kemp, Future Strategies for Tissue and Organ Replacement, ISBN 1-86094-310-1, Imperial College Press, 2002.
  • [6] L.L. Hench, J.M. Polak, Science, 2002, 295, 1009.
  • [7] J .R. Jones, L.L. Hench, J. Mater. Sci., 2003, 38, 3783.
  • [8] O. Bruyere, C. Roux, J. Badurski, G. Isaia, M. De Vernejjoul, J. Cannata, S. Ortolani, D. Ortolani, D. Slosman, J. Detilleux, J.Y. Reginster, Current Medical Research and Opinion, 2007, 23, 3041.
  • [9] J .-P. Marie, Current Opinion in Pharmacology, 2005, 5, 633.
  • [10] J . Braux, F. Velard, C. Guillaume, S. Bouthors, E. Jallot, J.-M. Nedelec, D. Laurent-Maquin, P. Laquerriere, Acta Biomaterialia, 2011, 7, 2593.
  • [11] K . Cholewa-Kowalska, Materiały Ceramiczne, 2008, 2, 81.
  • [12] E.M. Santos, S. Radin, P. Ducheyne, Biomaterials, 2001, 22, 701.
  • [13] C.J. Goodwin, M. Braden, S. Downes, N.J. Marshall, J. Biomed. Mater. Res., 1997, 34, 47.
  • [14] D. Arcos, C.V. Ragel, M. Vallet-Regi, Biomaterials, 2001, 22, 701.
  • [15] S.L. De Guevara-Fernande, C.V. Ragel, M. Vallet-Regi, Biomaterials, 2003, 24, 4037.
  • [16] R.E. Coleman, Clin. Cancer Res., 2006, 12, S6243.
  • [17] J . van der Zee, Ann. Oncol., 2002, 13, 1173.
  • [18] A. Matsumine, K. Takegami, K. Asanuma, T. Matsubara, T. Nakamura, A. Uchida, A. Sudo, Int. J. Clin. Oncol., 2011, 16, 101.
  • [19] R. Ivkov, S.J. DeNardo, W. Daum, Clin. Cancer Res., 2005, 11, 7093s.
  • [20] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng., 2005, 100, 1.
  • [21] M. Kawashita, M. Tanaka, T. Kokubo, Y. Inoue, T. Yao, S. Hamada, T. Shinjo, Biomaterials, 2005, 26, 2231.
  • [22] M.E. Ring, Dentistry: An Illustrated History, New York, Abradable Press, 1985.
  • [23] L.L. Hench, J.W. Wilson, Science, 1984, 226, 251.
  • [24] L.L. Hench, R. Sprinter, W. Allen, T.K. Gieenlee, Journal of Biomedical Materials Research, 1971, 5, 117.
  • [25] Y. Park, K.-N. Kim, K.-M. Kin, S. Choi, C. Kim, R.Z. Legeros, J. Lee, Journal of Materials Science, 2006, 41, 4357.
  • [26] J .F. Osborn, Biomaterials, 1980, 1, 108.
  • [27] P. Christel, Clinical Orthopedics, 1992, 282, 210.
  • [28] J .O. Hollinger, J. Brekke, E. Gruskin, D. Lee, Clin. Orthop. Rel. Res., 1996, 324, 55.
  • [29] M. Bohner, Injury. Int. Care Injured., 2000, 31, S-D37.
  • [30] M. Vallet-Regi, J.M. Gonzalez-Calbet, Prog. Solid State Chem., 2004, 32, 1.
  • [31] S.V. Dorozhkin, J. Mater. Sci., 2007, 42, 1061.
  • [32] E. Damien, P.A. Revell, Journal of Applied Biomaterials and Biomechanics, 2004, 2, 65.
  • [33] Engineering and Physics Sciences Research Council, Medicine and Materials, EPSRC, February 2006.
  • [34] L. Bonneviot, New Journal of Chemistry, 2008, 32, 1283.
  • [35] X. He, X. Zhou, B. Su, Materials Letters, 2009, 63, 830.
  • [36] V. Valtchev, F. Gao, L. Tosheva, New Journal of Chemistry, 2008, 32, 1331.
  • [37] E. Prouzet, S. Ravaine, C. Sanchez, R. Backov, New Journal of Chemistry, 2008, 32, 1284.
  • [38] Ł . John, J. Lao, E, Jallot, J.-M. Nedelec, wysłano do druku.
  • [39] E. Jallot, J. Lao, Ł. John, J. Souli , Ph. Moretto, J.-M. Nedelec, ACS Applied Materials & Interfaces, 2010, 2, 1737.
  • [40] A. Rainer, S. M. Giannitelli, F. Abbruzzese, E. Traversa, S. Licoccia, M. Trombetta, Acta Biomaterialia, 2008, 4, 362.
  • [41] J .R. Jones, L.M. Ehrenfried, P. Saravanapavan, L.L. Hench, Journal of Materials Science: Materials in Medicine, 2005, 16, 851.
  • [42] J .R. Jones, L.L. Hench, Properties of Bioactive Foam Scaffolds, Wiley Periodicals, UK 2003.27.
  • [43] P. Saravanapava, J.R. Jones, R.S. Pryce, L.L. Hench, Journal of Biomedical Materials Research Part A, 2003, 66A, 110.
  • [44] M. Vallet-Regi, L. Ruiz-Gonzalez, I. Izquierdo-Barba, J.M. Gonzalez-Calbet, Journal of Materials Chemistry, 2006, 16, 26.
  • [45] J .P. Zhong, D.C. Greenspan, Journal of Biomedical Materials Research, 2000, 53, 694.
  • [46] C. Wu, Y. Ramaswamy, Y. Zhu, R. Zheng, R. Appleyard, A. Howard, H. Zreiqat, Biomaterials, 2009,30, 2199.
  • [47] Z . Hong, R.L. Reis, J.F. Mano, Acta Biomaterialia, 2008, 4, 1297.
  • [48] Ł . John, M. Bałtrukiewicz, P. Sobota, R. Brykner, Ł. Cwynar-Zając, P. Dzięgiel, wysłano do druku.
  • [49] E. Olędzka, M. Sobczak, W.L. Kołodziejski, Polimery, 2007, 52, 795.
  • [50] R.L. Reis, A.M. Cunha, M.H. Fernandes, R.N. Correira, Journal of Materials Science: Materials in Medicine, 1997, 8, 897.
  • [51] R.Z. Legeros, I. Orly, M. Gregoire, G. Daculsi, The Bone-Biomaterial Interface, University of Toronto Press, Torento, 1991.
  • [52] A. Belleney, M. Wisniewski, A. Le Borgne, European Polymer Journal, 2004, 40, 523.
  • [53] L.L. Hench, J.K. West, Chem. Rev., 1990, 90, 33.
  • [54] A. Cüeyt Tas, Biomaterials, 2000, 21, 1429.
  • [55] A. Ramila, M. Vallet-Regi, Biomaterials, 2001, 22, 2301.
  • [56] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed., 2006, 45, 3216.
  • [57] F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regi, J. Am. Chem. Soc., 2006, 128, 8116.
  • [58] A. Nieto, M. Colilla, F. Balas, M. Vallet-Regi, Langmuir, 2010, 26, 5038.
  • [59] A. López-Noriega, D. Arcos, M. Vallet-Regi, Chem. -Eur. J., 2010, 16, 10879.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.