Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we establish the families of terminating and non-terminating q-Gauss hypergeometric series discrete distributions and we associate them with defined classes of generalized q- Hahn and big q-Jacobi orthogonal polynomials, respectively. Also, we give the q-factorial moments and the usual moments for these two families of q-Gauss hypergeometric series distributions. Moreover, we present their probabilistic interpretation as q-steady-state distributions fromMarkov chains and we designate the generalized q-Hahn processes and generalized big q-Jacobi processes emerged by these q-Markov chains. As special cases the q-hypergeometric, the negative q-hypergeometric distributions and their inverses are presented.
Słowa kluczowe
q-Gauss hypergeometric series distributions
q-factorial moments
q-Hahn and big q-Jacobi orthogonal polynomials
birth-abort-death processes
q-hypergeometric distribution
inverse q-hypergeometric distribution
negative and inverse negative q-hypergeometric distributions
q-Hahn and big q-Jacobi processes
Wydawca
Czasopismo
Rocznik
Tom
Strony
229--248
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
autor
autor
- Department Informatics and Telematics, Harokopion University, El. Venizelou 70, Athens Greece, akyriak@hua.gr
Bibliografia
- [1] M. Bozezjko, B. Kümmerer and R. Speicher, q-Gaussian processes: non-commutative and classical aspects, Commun. Math. Phys. 185 (1997), 129-154.
- [2] W. Bryc and J. Wesolowski, Conditional moments of q-Meixner processes, Prob. Theor. Relat. Fields, 131 (2005),415-441.
- [3] Ch. A. Charalambides,Moments of a class of discrete q-distributions, J. Stat. Plan. Infer. 135 (2005), 64-76.
- [4] Ch. Charalambides and A. Papadatos, The q-factorial moments of discrete q-distributions and a characterization of the Euler distribution. In N. Balakrishnan, I.G. Bairamov and O.L. Gebizlioglu (Eds.)Advances on Models, Characterations and Applications, Chapman Hall, CRCPress, Boca Raton, FL (2005),57-71.
- [5] Ch. A. Charalambides, A q-P´olya urn model and the q-P´olya and inverse q-P´olya distributions, submitted manuscript.
- [6] J.S. Christiansen, Inderminate moment problems within the Askey-scheme, PH.D. thesis, Institute for Mathematical Sciences, University of Copenhagen, 2004.
- [7] J. Favard, Sur les polynomes de Tchebicheff, Compt. Rend. de l'Académ. des Scienc. 200(1935), 2052-2053.
- [8] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in one variable, Cambridge University Press, Cambridge, 2005.
- [9] A.W. Kemp, Steady state Markov chain models for the heine and Euler distributions, J. Appl. Probab. 29 (1992), 869-876.
- [10] A.W. Kemp, Absorption sampling and the absorption distribution, J. Appl. Probab. 35 (1998), 489-494
- [11] A.W. Kemp, Certain q-analogue of the binomial distribution, Sankhya: The Indian Journal of Statistics 64 (2002), 293-305.
- [12] A.W. Kemp, Steady-state Markov chain models for certain q-confluent hypergeometric distributions, J. Stat. Plan. Infer. 135 (2005), 107-120.
- [13] A.W. Kemp and C.D. Kemp,Welson's dice data revisited, Amer. Statistician 45 (1991), 216-222.
- [14] A.W. Kemp and C.D. Newton, Certain state-dependent process for dichotomised parasite population, J. Appl. Probab. 27 (1990), 251-258.
- [15] R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, Report no. 98-17, 1998.
- [16] B.A. Kupershmidt, q-Probability: I. Basic Discrete Distributions, J. Non-linear Math. Phys. 7 (2000), 73-93.
- [17] A. Kyriakoussis and M.G. Vamvakari, q-Discrete Distributions Based on q-Meixner and q-Charlier Orthogonal Polynomials-Asymptotic Behaviour, to appear in J. Stat. Plan. Infer..
- [18] H. van Leeuwen and H. Maassen, A q-deformation of the Gauss distribution, J. Math. Phys. 36 (1995), 4743-56.
- [19] A. Saitoh and H. Yoshida, A q-deformed Poisson distribution based on orthogonal polynomials, J. Phys. A: Math. Gen. 33, (2000), 1435-1444.
- [20] S-C. Jing, The q-deformed binomial distribution and its asymptotic behaviour, J. Phys. A: Math. Gen. 27 (1994), 493-499.
- [21] G. Szegö, Orthogonal Polynomials, AMS Coll. Publ. vol. 23, Providence, RI:American Mathematical Society, 1939.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.