Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We first briefly review the role of lattice paths in the derivation of fermionic expressions for the M(p, p')minimalmodel characters of the Virasoro Lie algebra. We then focus on the recently introduced half-lattice paths for the M(p, 2pš1) characters, reformulating them in such a way that the two cases may be treated uniformly. That the generating functions of these half-lattice paths are indeed M(p, 2p š 1) characters is proved by describing weight preserving bijections between them and the corresponding RSOS lattice paths. Here, the M(p, 2p - 1) case is derived for the first time. We then apply the methods of Bressoud and Warnaar to these half-lattice paths to derive fermionic expressions for the Virasoro characters [...] We first briefly review the role of lattice paths in the derivation of fermionic expressions for theM(p, p')minimalmodel characters of the Virasoro Lie algebra. We then focus on the recently introduced half-lattice paths for theM(p, 2pš1) characters, reformulating them in such a way that the two cases may be treated uniformly. That the generating functions of these half-lattice paths are indeedM(p, 2p š 1) characters is proved by describing weight preserving bijections between them and the corresponding RSOS lattice paths. Here, theM(p, 2p - 1) case is derived for the first time. We then apply the methods of Bressoud and Warnaar to these half-lattice paths to derive fermionic expressions for the Virasoro characters[...] that differ from those obtained from the RSOS paths.hat differ from those obtained from the RSOS paths.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
57--83
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
autor
autor
- Département de physique, de génie physique et d’optique, Université Laval, Qu´ebec, G1K 7P4, Canada, trevor.welsh@utoronto.ca
Bibliografia
- [1] Andrews, G. E.: The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.
- [2] Andrews, G. E., Baxter, R. J., Forrester, P. J.: Eight-vertex SOS model and generalized Rogers-Ramanujan type identities, J. Stat. Phys., 35, 1984, 193-266.
- [3] Berkovich, A., McCoy, B. M.: Continued fractions and fermionic representations for characters of M(p, p′) minimal models, Lett. Math. Phys., 37, 1996, 49-66.
- [4] Berkovich, A., McCoy, B. M.: Rogers-Ramanujan identities: a century of progress from mathematics to physics, Proceedings of the International Congress of Mathematicians (Berlin, 1998). Doc. Math., Extra Vol. III, 1998.
- [5] Berkovich, A.,McCoy, B.M., Pearce, P. A.: The perturbations φ2,1 and φ1,5 of the minimal modelsM(p, p′) and the trinomial analogue of Bailey's lemma, Nucl. Phys. B, 519, 1998, 597-625.
- [6] Berkovich, A., McCoy, B. M., Schilling, A.: Rogers-Schur-Ramanujan type identities for the M(p, p′) minimal models of conformal field theory, Comm. Math. Phys., 191, 1998, 325-395.
- [7] Blondeau-Fournier, O., Mathieu, P., Welsh, T. A.: A bijection between paths for the M(p, 2p + 1) minimal model Virasoro characters, Ann. Henri Poincaré, 11, 2010, 101-125.
- [8] Bressoud, D.: Lattice paths and the Rogers-Ramanujan identities, in: Number Theory, Madras 1987 (K. Alladi, Ed.), vol. 1395 of Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1989, 140-172.
- [9] Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models: local height probabilities and theta function identities, Nucl. Phys. B, 290, 1987, 231-273.
- [10] Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory, Springer, New York, 1997.
- [11] Foda, O., Lee, K. S. M., Pugai, Y., Welsh, T. A.: Path generating transforms, Contemp. Math., 254, 2000, 157-186.
- [12] Foda, O., Welsh, T. A.: Melzer's identities revisited, Contemp. Math., 248, 1999, 207-234.
- [13] Foda, O., Welsh, T. A.: On the combinatorics of Forrester-Baxter models, Physical Combinatorics, Kyoto 1999 (M. Kashiwara, T. Miwa, Eds.), 191, Birkhauser, Boston, 2000.
- [14] Forrester, P. J., Baxter, R. J.: Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers-Ramanujan identities, J. Stat. Phys., 38, 1985, 435-472.
- [15] Jacob, P., Mathieu, P.: A new path description for the M(k + 1, 2k + 3) models and the dual Zk graded parafermions, J. Stat. Mech., P11005, 2007, (43 pages).
- [16] Jacob, P., Mathieu, P.: Fermi-gas interpretation of the RSOS representation of the superconformal unitary minimal models, Nucl. Phys. B, 805, 2008, 517-544.
- [17] Kac, V., Raina, A. K.: Bombay lectures on highest weight representations of infinite dimensional Lie algebras, World Scientific, Singapore, 1987.
- [18] Kedem, R., Klassen, T., McCoy, B., Melzer, E.: Fermionic sum representations for conformal field theory characters, Phys. Lett. B, 307, 1993, 68-76.
- [19] Melzer, E.: Fermionic character sums and the corner transfer matrix, Int. J. Mod. Phys. A, 9, 1994, 1115-1136.
- [20] Rocha-Caridi, A.: Vacuum vector representations of the Virasoro algebra, in: Vertex Operators in Mathematics and Physics (J. Lepowsky, S. Mandelstam, I. M. Singer, Eds.), Springer, New York, 1985, 451-473.
- [21] Warnaar, S. O.: Fermionic solution of the Andrews-Baxter-Forrester model. I. Unification of CTM and TBA methods, J. Stat. Phys., 82, 1996, 657-685.
- [22] Warnaar, S. O.: Fermionic solution of the Andrews-Baxter-Forrestermodel. II. Proof ofMelzer's polynomial identities, J. Stat. Phys., 84, 1996, 49-83.
- [23] Warnaar, S. O.: q-Trinomial identities, J. Math. Phys., 40, 1999, 2514-2530.
- [24] Welsh, T. A.: Fermionic expressions for minimal model Virasoro characters, Mem. Amer. Math. Soc., 175(827), 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0026-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.