PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generic composition and metabolic activity of bacteria inhabiting surface seawater layers

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generic composition and metabolic activity of neustonic and planktonic bacteria inhabiting seawater in the region of the Gdansk Deep were determined. In each of the studied water layers, bacteria of the Flavobacterium-Cytophaga group domi-nated, while bacteria of the Micrococcus, Acineto-bacter, Bacillus genera and of the Arthrobacter-Corynebacterium group constituted only a slight percentage of the bacterioneuston and bakterioplankton. Different levels of metabolic activity of bacteria inhabiting different water layers were measured. The intensity of oxidization of respiratory substrates depended also on taxonomic position of bacteria. Generally casein hydrolyzate was the most actively metabolized respiratory substrate; sodium acetate was oxidized with lesser intensity. A considerable impact of salinity on the level of metabolic activity was noticed.
Rocznik
Strony
57--70
Opis fizyczny
Bibliogr. 59 poz., tab., wykr.
Twórcy
autor
  • Department of Experimental Biology, Pedagogical University, ul. Arciszewskiego 22, 76-200 Słupsk, Poland
Bibliografia
  • [1.] Bailey C. A., Neihof R. A., Tabor P. S., 1983, Inhibitory effect ofsolar radiation on amino acid uptake in Chesapeake Bay bacteria, Appl. Environ. Microbiol., 46, 44-49.
  • [2.] Baumann L., Baumann P., Mandel M., Allen R. D., 1972, Taxonomy of aerobic marine eubacteria, J. Bacteriol., 110, 402-429.
  • [3.] Bell C. R. Albright L. J., 1982, Bacteriological investigation of the neuston and plankton in the Fraser River estuary, British Columbia, Est. Coast. Shelf Sci., 15, 385-394.
  • [4.] Berard A., Volat B., Montuelle B., 1995, Bacterial activity and its role in a eutrophic pond, Arch. Hydrobiol., 134, 499-513.
  • [5.] Billen G., Fontigny A., 1987, Dynamics of a phaeocystis-dominant spring bloom in Belgian coastal waters. II. Bacterioplankton dynamics, Mar. Ecol. Prog. Ser., 37, 249-257.
  • [6.] Donderski W., 1983, Heterotrophic aerobie bacteria in lakes of different trophy, Uniwersytet im. M. Kopernika, Toruń (in Polish).
  • [7.] Donderski W., Strzelczyk E., 1980, Metabolic activity of planktonic bacteria in three lakes of different trophy, Bull. Acad. Polon. Sci., 28, 39-46.
  • [8.] Fehon W. C., Oliver J. D., 1979, Taxonomy and distribution of surface microlayer bacteria from two estuarine sites, Estuaries, 2, 194-197.
  • [9.] Forysth M. P., Kushner D. J., 1970, Nutrition and distribution of salt response in populations of moderately halophilic bacteria, Can. J. Microbiol., 16, 253-261.
  • [10.] Gardner W. S., Benner R., Chin-Leo G., Cotner J. B., Eadie B. J., Cavaletto J. E,, 1994, Mineralization of organic materiał and bacterial dynamics in Mississippi river, Estuaries, 17, 816-828.
  • [11.] Garrett W. D., 1965, Collection of slick-forming materials from the sea surface, Limnol. Oceanogr., 10, 602-605.
  • [12.] Godlewska-Lipowa W., 1974, Heterotrophic activity of bacterial microflora in Mazurian lakes of various trophy, Pol. Arch. Hydrobiol., 21, 51-58.
  • [13.] Gossens H., Minnar R. S., Verplanke H., 1984, Carbon mineralization in the water of lake Grevelingen as measured with the oxygen consumption method, Neth. J. Sea Res., 480-491.
  • [14.] Harvey G. W., Burzeli L. A., 1972, A simple microlayer method for small samples, Limnol. Oceanogr, 17, 156-157.
  • [15.] Hidaka T., Shimazu S., 1984, Seasonal changes in the generic composition of heterotrophic bacteria in seawater of Kagoshima Bay, Mem. Fac. Fish, 33, 97-105.
  • [16.] Hoppe H. G., 1977, Analysis of actively metabolizing bacterial populations with the autoradiographic method, Ecol. Stud., 25, 179-196.
  • [17.] Kemp P. F., 1987, Potential impact of bacteria of grazing by a macrofaunal deposit-feeder, and the fate of bacterial production, Mar. Ecoi. Prog. Ser., 36, 151-156.
  • [18.] Kreig N. R., Holt J. G., 1984, Bergey's Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore.
  • [19.] Kushwaha S. C., Kates C. M., Kramer J. K., 1977, Occurrence of indole in cells of extremely halophilic bacteria, Can. J. Microbiol., 23, 826-828.
  • [20.] Laanbroek H. J., Verplanke J. C., 1986, Tidal variations in bacterial biomass, productivity and oxygen uptake rates in a shallow channel in the Oosterschelde basin, The Netherlands, Mar. Ecoi. Prog. Ser., 29, 1-5.
  • [21.] Lanayi J. K., 1974, Salt-dependent properties of proteins from extermely halophilic bacteria, Bacteriol. Rev., 38, 272-290.
  • [22.] Lion L. W., Leckie J. O., 1981, The biochemistry of the air-sea interface, Ann. Rev. Planet. Sci., 9, 449-486.
  • [23.] MacLeod R. A., Thurman P., Rogers H., 1973, Comparative transport activity of intact cell membrane vesides and mesosomes of Bacillus lichenoformis, J. Bacteriol., 113, 329-340.
  • [24.] Maki J. S., 1993, The air-water interface as an exterme environment, [in:] Aquatic Microbiology, (ed.) Ford T.E., Blackwell Scientific Publications, 409-440.
  • [25.] Maki J. S., Harwig R. P., 1991, A diel study of the neuston and plankton bacteria in an Antarctic pond, Antarctic Sci., 3, 47-51.
  • [26.] Maki J. S., Hermansson M., 1994, The dynamics of surface microlayers in aquatic environments, [in:] The Biology of Particles in Aquatic Systems, (ed.) Wotton R. S. Lweis Publishers, Boca Raton, Ann Arbor, London, Tokyo, 161-182.
  • [27.] Martinez R., Estrada M., 1992, Respiratory electron transport activity of microplankton in the Weddell Sea during early spring: influence of the ice cover and ice edge, Polar Biol., 12, 275-282.
  • [28.] Mudryk Z., 1989, Determination of the metabolic activity of heterotrophic bacteria isolated from estuarine Gardno lake, Pol. Arch. Hydrobiol., 36, 97-103.
  • [29.] Mudryk Z., Donderski W., 1991, Effect of sodium chloride on the metabolic activity of halophilic bacteria isolatedftom the Lake Gardno estuary, Estuaries, 14, 495-498.
  • [30.] Mudryk Z., 1997, Studies on metabolic activity of planktonic bacteria isolated from coastal lake Łebsko, Pol. J. Environ., 6, 23-28.
  • [31.] Novitsky J. A., 1983, Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbour, Canada, Appl. Environ. Microbiol., 45, 1753-1760.
  • [32.] Oh S., Kogure K., Ohwada K., Simidu V., 1991, Correlation between possession of a respiration-dependent Na+ pump and Na+ requirement for growth of marine bacteria, Appl. Environ. Microbiol., 57, 1844-1846.
  • [33.] Oliver J. D., 1982, Taxonomic scheme for the identification of marine bacteria, Deep-Sea Res., 29, 795-798.
  • [34.] Oliver J. D., 1987, Heterotrophic bacterial populations of the Black Sea, Biol. Oceanogr., 4, 83-97.
  • [35.] Onishi H., 1972, Salt response of amylase produced in media of different NaCl or KCl concentrations by a moderately halophilic Micrococcus, Can. J. Microbiol., 118, 1617-1620.
  • [36.] Osowska-Cypryk K., 1981, Microbiological studies of waters and bottom sediments of Utrata river, Pol. Arch. Hydrobiol., 28, 357-379.
  • [37.] Parkinson D., Coleman D. C., 1991, Microbial communities, activity and biomass, Agr. Ecosyst. Environ., 34, 3-33.
  • [38.] Pomeory L. R., 1984, Microbial processes in the sea: diversity in nature and science, [in:] Heterotrophic Activity in the Sea, (eds), Hobbie J. E., Williams P. J., 1-23.
  • [39.] Pomeroy L. R., Sheldon J. E., Sheldon W. M., 1994, Changes in bacterial numbers and leucine assimilation during estimations of microbial respiratory tares in seawater by the precision Winkler method, Appl. Environ. Microbiol., 60, 328-332.
  • [40.] Rheinheimer G., 1977, Microbial ecology of a brackish water environment, Ecol. Stud. 25, Springer-Verlag Berlin, Heidelberg, New York.
  • [41.] Rheinheimer G., 1981, Investigations on the role of bacteria in the food web of the Western Baltic, Kiel. Meer. Sonderh., 5, 284-290.
  • [42.] Rieper-Kirchner M., 1990, Macroalgal decomposition: laboratory studies with particular regard to microorganisms and meiofaune, Hel Meer., 44, 397-410.
  • [43.] Sieburth J. M. N., 1971, Distribution and activity of oceanic bacteria, Deep-Sea Res., 18, 1111-1121.
  • [44.] Simidu U., Kogure K., Fukami K., Imada C., 1986, Heterotrophic bacterial flora of the Antarctic Ocean, Mem. Natl. Polar Res., 40, 405-412.
  • [45.] Simon M., 1991, Isotope dilution of intercellular aminoacids as a tracer of carbon and nitrogen sources of marine planktonic bacteria, Mar. Ecol. Prog. Ser., 14, 295-301.
  • [46.] Spratt G. D., Drozdowski J. P., Martin E. L., MacLeod R. A., 1975, Kinetics of Na+ dependent amino acid transport using cells and membrane vesicles of a marine Pseudomonad, Can. J. Microbiol., 21, 43-50.
  • [47.] Strzelczyk E., Mielczarek A., 1971, Comparative studies on metabolic activity of planktonic, benthic and epiphytic bacteria, Hydrobiologia, 38, 67-77.
  • [48.] Strzelczyk E., Leniarska U., Donderski W., 1974, Studies on metabolic activity ofbenthic bacteria isolated from three lakes, Acta Microbiol. Polon., 6, 125-132.
  • [49.] Strzelczyk E., Stopiński M., Myzyk G., 1988, Studies on metabolic activity of single and mixed cultures of planktonic and benthic bacteria of two lakes of different trophy, AUNC Toruń Limnol. Papers, 16, 3-13.
  • [50.] Sugahara I., Kimura T., Hayashi K., Nakajama I., 1988, Distribution and generic composition of lytic enzyme-producing bacteria in coastal and oceanic bottom sediments, Nipp. Sui. Gakk., 54, 1011-1015.
  • [51.] TanakaN., Ueda Y., Onizawa M., Kadota H., 1977, Bacterial populations in water masses of different organic matter concentrations in lake Biwa, Jap. J. Limnol., 38, 41-47.
  • [52.] Vosjan J. H., 1988, The ATP and ETS method in the study of surface layers and deep-basins of East Indonesian waters, Arch. Hydrobiol. Beih. Ergeben. Limnol., 31, 221-228.
  • [53.] Vosjan J. H., Tijssen S. B. Nieuwland G., Wetsteyn F. J., 1990a, Oxygen regime, respiratory activity and biomass of microorganisms and the carbon budget in the Fladen ground area (Northern North Sea) during spring, Neth. J. Sea Res., 25, 89-99.
  • [54.] Vosjan J. H., Döhler G., Nieuwland G., 1990b, Effect of UV-B irradiance on the ATP content of microorganisms of the Weddell Sea (Antarctica), Neth. J. Sea Res., 25, 391-393.
  • [55.] Watanabe Y., Goltman C., 1984, Heterotrophic bacterial community in oligotrophic lake Tahoe, Verein. Limnol., 22, 584-590.
  • [56.] Williams P. M., Carlucci A. F., Henrichs S. M., Van Vleet E. S., Horrigan S. G., Reid F. M., Robertson K. J., 1986, Chemical and microbiological studies of surface film in the southern Gulf of California and off the west coast of Baja California, Mar. Chem., 19, 17-98.
  • [57.] Wirsen C.O., Jannasch H. W., 1974, Microbial transformation of some 14C- labelled substrates in coastal water and sediment, Microbiol. Ecol., 1, 25-37.
  • [58.] Wright R. T., Coffin R. B. Lebo M. E., 1987, Dynamics of planktonic bacteria and heterotrophic microflagelattes in the Parker Estuary, northern Massachusetts, Cont. Shelf Res., 7, 1383-1397.
  • [59.] Zmysłowska I., 1987, The effect of removing hypolimnion waters from lake Kortowskie upon the bacterial micrflora, Akademia Rolniczo-Techniczna, Olsztyn, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0025-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.