PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The degradation of stranded carrion on a Baltic Sea sandy beach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Litterbags of two mesh sizes (0.5 mm and 0.02 mm) were employed to assess the role of faunal and physical components in carrion breakdown on sandy beaches. Field experiments were undertaken on two sandy beaches in Poland. The tissue of Gadus morrhua L. and the white of a hen's egg were used as substrata to be decomposed in the litterbags. The bags, together with control bags, were distributed in three trials in different beach locations (medium water-mark, strandline, backshore, and dune) and at appropriate depths (5, 20 and 50 cm deep). Each trial was run for 20 days and was set up on the beach profile. The litterbags were retrieved after 3, 6,10, 15 and 20 days. The remaining material was then dried and weighed, and analysed using a C11N Analyser. Organic material was rapidly lust from the litterbags. From 4 to 56 % of the original dry mass remained after 20 days in the field in the coarse-mesh bags. However, between llic low and higW-beach stations there were some differences in the decay process. At the former, degradation proceeded rapidly in the initial stages and then stabilised, at the latter it did so linearly throughout the study period. The fact that fauna were excluded from the carrion by the use of finer mesh litterbags had an appreciable effect on the rate of dry matter loss. Microbial decay, abiotic leaching and fragmentation were thought to be major causes of carrion weight loss from the litterbags. The rate of dry mass loss, expressed as loss of organic material, ranged from 1 to 14% per day. At the same time, the C/N ratio increased, which was evidence of the earlier use of nitrogen as an energy source. These results suggest that differences in organic matter degradation in high and low-beach areas can be explained by differences in moisture regime and nutrient status and not by differences in the decay processes themselves.
Słowa kluczowe
Rocznik
Strony
109--141
Opis fizyczny
Bibliogr. 77 poz., tab., wykr.
Twórcy
  • Department of Marine Ecology, Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1.] Anderson J. M., Ineson P., 1984, Interaction between microorganisms and soil invertebrates in nutrient flux pathways of forest ecosystems, [in:] Invertebrate-microbial interactions, Anderson J. M., Rayner A. D. M. , Walton D. W. H. (eds), Cambridge University Press, Cambridge, 59-88.
  • [2.] Bedford A. P., Moore P. G., 1984, Macrofaunal involvement in the sublittoral decay of kelp debris, Estuar. Coast. Shelf Sci., 18, 97-111.
  • [3.] Behbehani M. J., Crocker R. A., 1982, Ecology of beach wrack in northern New England with special reference to Orchestia platensis, Estuar. Coast. Shelf Sci., 15, 611-620.
  • [4.] Benner R., Fogel M. L., Sprague E. K., 1991, Diagenesis of below-ground biomass of Spartina alterniflora in salt marsh sediments, Limnol. Oceanogr., 36, 1358-1374.
  • [5.] Berg B., Berg M. P., Bottner P., Box E., Breymeyer A., Calvo de Anta R., Couteaux M., Escudero A., Gallardo A., Kratz W., Madeira M., Malkiinen E., McClaugherty C., Meentemeyer V., Munoz F., Piussi P., Remacle J., Vrizo de Santo A., 1993, Litter mass lass rates in pine forests of Europe and the Eastern United States: some relationships with climate and litter quality, Biochemistry, 20, 127-159.
  • [6.] Bermingham S., Maltby L., Cooke R. C., 1996, Efects of a coal mine effluent on aquatic hyphomycetes. I. Field study. J. Appl. Ecol., 33, 1311-1321.
  • [7.] Bird E. C. F., 1983, Factors affecting beach erosion and accretion: a global review, [in:] Sandy beaches as ecosystems, McLachlan A., Erasmus T. (eds), W. Junk, The Hague, 709-717.
  • [8.] Blair J. M., 1988, Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the Southern Appalachians, Soil Biol. Biochem., 20 (5), 693-701.
  • [9.] Bloem J., de Ruiter P. C., Koopman G. J., Lebbink G., Brussaard L., 1992, Microbial numbers and activity in dried and rewetted arabie soil under integrated and conventional management, Soil Biol. Biochem., 24, 655-665.
  • [10.] Blum L. K., 1993, Spartina alterniflora root dynamics in a Virginia marsh, Mar. Ecol. Prog. Ser., 102, 169-178.
  • [11.] Brown A. C., McLachlan A., 1990, Ecology of sandy shores, Elsevier, Amsterdam - Oxford - New York - Tokyo, 328 pp.
  • [12.] Buth G. J. C., Voeseneck L. A. C. J., 1987, Decomposition of standing and fallen flitter of halophyles in a Dutch salt marsh, [in:] Variation between land and sea, Huiskes A. H. L., Blom C. W. P. M., Rozema J. (eds), W. Junk, Dordrecht, 146-162.
  • [13.] Conn Ch. E., Day F. P., 1996, Response of root and cotton strip decay to nitrogen amendment along a barrier island dune chronosequence, Can. J. Bot., 74, 276-284.
  • [14.] Cotrufo M. F., Ineson P., Rowland A. P., 1994, Decomposition of tree leaf litters grown under elevated CO2: effect of litter quality, Plant Soil, 163, 121-130.
  • [15.] Davis R. A., Jr, 1972, Principles ofoceanography, Addison-Wesley Publishing Company, Reading - Menlo Park - London - Don Mills, 434 pp.
  • [16.] Day F. P., 1995, Environmental influences on below-ground decomposition on a coastal barrier island determined by cotton strip assay, Pedobiologia, 39, 289-303.
  • [17.] Donnelly P., Entry J. E., Crawford D. L., Cromach K., 1990, Cellulose and lignin degradation in forest soils: response to moisture, temperature and acidity, Microb. Ecol., 20, 289-295.
  • [18.] Dziadowiec H., 1992, Decomposition of Saxifraga oppisitifolia L. shoots and Deschampsia alpina (L.) R. et S. leaves under conditions of Spitsbergen tundra, Landscape, nature and man in the high Arctic, 1, 177-183.
  • [19.] Elmgren R., Radziejewska T., 1989, Recommendation for quantitative benthic meiofauna studies in the Baltic, Balt. Mar. Biol. Publ., 12, 1-24.
  • [20.] Emery S. L., Perry J. A., 1996, Decomposition rates and phosphorus concentrations of purple loosestrife (Lythrum salicaria) and cattail (Typka spp.) in fourteen Minnesota Wetlands, Hydrobiologia, 323, 129-138.
  • [21.] Gallagher J. L., Kibby H. V., Kirvin K. W. S., 1984, Detritus processing and mineral cycling in seagrass (Zostera) litter in an Oregon saltmarsh, Aquat. Bot., 20, 97-108.
  • [22.] Gerlach S. A., 1977, Attraction to decaying organisms as a possible cause for patchy distribution of nematodes in a Bermuda beach, Ophelia, 16, 151-165.
  • [23.] Giere O., 1975, Population structure, food relations and ecological role of marine oligochaeles, with special reference to meiobenthic species, Mar. Biol., 31, 139-156.
  • [24.] Griffiths C. L., Stenton-Dozey J., 1981, The fauna and race of degradation of stranded kelp, Estuar. Coastal Shelf Sci., 12, 645-653.
  • [25.] Griffiths C. L., Stenton-Dozey J. M. E., Koop K., 1983, Kelp wrack and energy flow through a sandy beach, [in:] Sandy beaches as ecosystems, McLachlan A., Erasmus T. (eds), W. Junk, The Hague, 547-556.
  • [26.] Hackney C. T., 1987, Factors affecting accumulation or loss of macroorganic matter in sali marsh sediments, Ecology, 68, 1109-1113.
  • [27.] Hackney C. T., de la Cruz A. A., 1980, In situ decomposition of roots and rhizomes of two tidal marsh plants, Ecology, 61, 226-231.
  • [28.] Haque A. M., Szymelfenig M., Węsławski J. M., 1996, The sandy littoral zoobenthos of the Polish Baltic coast, Oceanologia, 38 (3), 361-378.
  • [29.] Haque A. M., Szymelfenig M., Węsławski J. M., 1997a, Spatial and seasonal changes in the sandy littoral zoobenthos of the Gulf of Gdańsk, Oceanologia, 39 (3), 299-324.
  • [30.] Haque A. M., Szymelfenig M., Węsławski J. M., 1997b, Small-scale vertical distribution of zoobenthos in the sandy litloral of the Gulf of Gdańsk, Oceanologia, 39 (4), 433-446.
  • [31.] Harrison P. G., 1977, Decomposilion of macrophyte detritus in seawater: effects of grazing by amphipods, Oikos, 28, 165-170.
  • [32.] Harrison P. G., 1989, Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory, Aquat. Bot., 23, 263-288.
  • [33.] Harrison P. G., Mann K. H., 1975a, Chemical changes during the seasonal tytle of growth and decay in eelgrass (Zostera marina) on the Atlantic toast of Canada, J. Fish. Res. Bd. Can., 32, 615-621.
  • [34.] Harrison P. G., Mann K. H., 1975b, Detritus format ion from eelgrass (Zostera marina): the relative effects of fragmentation, leaching and decay, Limnol. Oceanogr., 20, 924-934.
  • [35.] Hennig H. F. - K. O., Fricke A. H., Martin C. T., 1983, The effect of meiofauna and bacteria on nutriem cycles in a sandy beach, [in:] Sandy beaches as ecosystems, McLachlan A., Erasmus T. (eds), W. Junk, The Hague, 235-247.
  • [36.] Inglis G., 1989, The colonisation and degradation of,stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach, J. Exp. Mar. Biol. Ecol., 125, 203-217.
  • [37.] Jenny H., Gessel S. P., Bringham F. T., 1949, Comparative study oj decomposition rates of organic matter in temperate and tropical regions, Soil Sci., 68, 419-432.
  • [38.] Josselyn J. M., Mathieson A. C., 1980, Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary, Hydrobiologia, 71, 197-208.
  • [39.] Kenworthy W. J., Thayer G. W., 1984, Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia lestudinum, in temperale and subtropical marine ecosystems, Bull. Mar. Sci., 35, 364-379.
  • [40.] Koop K., Field J. G., 1980, The influence of food availability on population dynamics of a supralittoral isopod, J. Exp. Mar. Biol. Ecol., 48, 61-72.
  • [41.] Koop K., Griffiths C. L., 1982, The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach, Mar. Biol., 66, 295-300.
  • [42.] Koop K., Lucas M. 1., 1983, Carbon flow and nutrient regeneration from the decomposition of macrophyte debris in a sandy beach microcosm, Sandy beaches as ecosystems, McLachlan A., Erasmus T. (eds), W. Junk, The Hague, 249-262.
  • [43.] Koop K., Newell R. C., Lucas M. 1., 1982, Biodegradation and carbon flow based on kelp debris (Ecklonia maxima) in a sandy beach microcosm, Mar. Ecol. Prog. Ser., 7, 315-326.
  • [44.] Kotwicki L., 1997, Macrozoobenthos of the sandylittoral zone of the Gulf of Gdańsk, Oceanologia, 39 (4), 447-460.
  • [45.] Lenanton R. C. J., Robertson A. I., Hansen J. A., 1982, Nearshore accumulations of detached macrophytes as nursery areas for fish, Mar. Ecol. Prog. Ser., 9, 51-57.
  • [46.] McClaugherty C. A., Pastor J., Aber J. D., Melillo J. M., 1985, Forest litter in relation to soil nitrogen dynamics and litter quality, Ecology, 66, 266-275.
  • [47.] McLachlan A., 1983, Sandy beach ecology - a review, [in:] Sandy beaches as ecosystems, McLachlan A., Erasmus T. (eds), W. Junk, The Hague, 321-380.
  • [48.] McLachlan A., McGwynne L. E., 1986, Do sandy beaches accumulale nitrogen? Mar. Ecol. Prog. Ser., 34, 191-195.
  • [49.] Meentemeyer V., Berg B., 1986, Regional variation in rale of mass loss of Pinus sylvestris needle litter in a Swedish forest as influenced by climate and litter quality, Scand. J. For. Res., 1, 167-180.
  • [50.] Moore A. M., 1986, Temperature and moisture dependence of decomposition rates of hardwood and coniferous leaf litter, Soil Biol. Biochem., 18, 427-435.
  • [51.] Newell S. Y., 1993, Decomposition of shoots of a salt marsh grass, Ady. Microb. Ecol., 13, 301-326.
  • [52.] Newell S. Y., Fallon R. D., 1989, Litterbags, leaf tags, and decay of nonabscised intertidal leaves, Can. J. Bot., 67, 2324-2327.
  • [53.] Newell S. Y., Fell J. W., Statzell-Tallman A., Miller C., Cefalu R., 1984, Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics, Aquat. Bot., 19, 183-192.
  • [54.] Olańczuk-Neyman K., Jankowska K., 1998, Bacteriological investigations of the sandy beach ecosystem in Sopot, Oceanologia, 40 (2), 137-151.
  • [55.] Park D., 1974, On the use of the litterbag method for studying degradation in aquatic habitats, Int. Biodeterior. Bull., 10, 45-48.
  • [56.] Pelikaan G. C., 1984, Laboratory experiments on eelgrass (Zostera marina) decomposition, Neth. J. Sea Res., 18, 360-383.
  • [57.] Petterson R. C., Cummins K. W., 1974, Heat processes in woodland streams, Freshwat. Biol., 4, 343-368.
  • [58.] Pieczka F., 1969, Numerical and graphical coefficients of the structure of sediments and the hydrodynamic regime of the sedimental marine environment, Budownictwo Wodne, 13, 51-146, (in Polish).
  • [59.] Racinowski R., Szczypek T., 1995, Presentation and interpretation of the results from the study of quaternary sediment granulation. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 143 pp, (in Polish).
  • [60.] Rice D. L., Tenore K. R., 1981, Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes, Estuar. Coast. Shelf Sci., 13, 681-690.
  • [61.] Riedl R. J., Machan R., 1972, Hydrodynamic patterns in lotic intertidal sands and their bioclimatological implications, Mar. Biol., 13, 179-209.
  • [62.] Robertson A. 1., Hansen J. A., 1981, Decomposing seaweed: a nuisance or a vital link in coastal food chain?, CSIRO Mar. Lab. Res. Rep., 75-83.
  • [63.] Robertson A. I., Mann K., 1980, The role of isopods and amphipods in the initial fragmentation of eelgrass detritus in Nova Scotia, Canada, Mar. Biol., 59, 63-69.
  • [64.] Singh N., Steinke T. D., Lawton J. R., 1991, Morphological changes and the associated fungal colonization during decomposition of leaves of a mangrove, Bruguiera gymnorrhiza (Rhizophoraceae), S. Afr. J. Bot., 57, 151-155.
  • [65.] Stenton-Dozey J. M. E., Griffiths C. L., 1983, The fauna associated with kelp stranded on a sandy beach, [in:] Sandy beaches as ecosystems, McLachlan A., Erasmus T. (eds), W. Junk, The Hague, 557-568.
  • [66.] St. John T. V., 1980, Influence of litterbags on growth of fungal vegetative structures, Oecologia, 46, 130-132.
  • [67.] Swift J. M., Heal O. W., Anderson J. M., 1979, Decomposition in terrestrial ecosystems, Stud. Ecol. 5, Blackwell, Oxford, 372 pp.
  • [68.] Tenore K. R., Cammen L., Findlay S. E. G., Phillips N., 1982, Perspectives of research on detritus: do factors controlling the availability of detritus to macroconsumers depend on its source?, J. Mar. Res., 40, 472-490.
  • [69.] Tian G., Brussaard L., Kang B. T., 1993, Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects of soil fauna, Soil Biol. Biochem., 25, 731-737.
  • [70.] Urban-Malinga B., Opaliński K. W., 1999, Total, biotic and abiotic oxygen consumption in a Baltic sandy beach: horizontal zonation, J. Exp. Mar. Biol. Ecol., (in press).
  • [71.] Valiela I., Teal J. M., Allen S. D., Van Etten R., Goehringer D., Volkmann S., 1985, Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter, J. Exp. Mar. Biol. Ecol., 89, 29-54.
  • [72.] van der Valk A. G., Attiwill P. M., 1983, Above- and below-ground filier decomposition in an Australian salt marskh, Australian J. Ecol., 8, 441-447.
  • [73.] Verhoeven J. T. A., Toth E., 1995, Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates,Soil Biol. Biochem., 27, 271-275.
  • [74.] Wachendorf C., Irmler U., Blume H. P., 1997, Relationships between litter fauna and chemical changes of filier during decomposition under different moisture conditions, [in:] Plant litter quality and decomposition. Driven by Nature, Cadish G., Giller K. E. (eds), CAB International, Wallingford - Oxon, 135-144.
  • [75.] Wieder R. K., Lang G. E., 1982, A crilique of the analytical methods used in examining decomposition data obtained from litter bags, Ecology, 63, 1636-1642.
  • [76.] Williams S. L., 1984, Decomposition of the tropical macroalga Caulerpa cupressoides (West) C. Agardh.: field and laboratory studies, J. Exp. Mar. Biol. Ecol., 80, 109-124.
  • [77.] ZoBell C. E., 1959, Factors affecting drift seaweeds on some San Diego beaches, Univ. Calif. Inst. Mar. Res. Rep., 59 (3).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0025-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.