PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Category of L-Chu Correspondences and the Structure of L-Bonds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An L-fuzzy generalization of the so-called Chu correspondences between formal contexts forms a category called L-ChuCors. In this work, we show that this category naturally embeds ChuCors and prove that it is *-autonomous. We also focus on the direct product of two L-fuzzy contexts, which is defined with the help of a binary operation, essentially a disjunction, on a lattice of truth-values L.
Słowa kluczowe
Wydawca
Rocznik
Strony
297--325
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
Bibliografia
  • [1] C. Alcalde, A. Burusco, R. Fuentes-González, and I. Zubia. Treatment of L-fuzzy contexts with absent values. Information Sciences, 179:1-15, 2009.
  • [2] M. Barr. *-autonomous categories. Lecture Notes in Mathematics 752, 1979.
  • [3] M. Barr. *-autonomous categories and linear logic. Mathematical structures in Computer Science 1:159-178, 1991.
  • [4] M. Barr. *-autonomous categories: once more around the track. Theory and Applications of Categories 6(1):5-24, 1999.
  • [5] R. Bělohlávek. Fuzzy concepts and conceptual structures: induced similarities. In Joint Conference on Information Sciences, pages 179-182, 1998.
  • [6] R. Bělohlávek. Lattices Generated By Binary Fuzzy Relations Tatra Mountains Mathematical Publications 16:11-19, 1999
  • [7] R. Bělohlávek. Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quartely, 47(1):111-116, 2001.
  • [8] R. Bělohlávek. Fuzzy Relational Systems: Foundations and Principles Kluwer Academic Publishers, 2002
  • [9] R. Bělohlávek. Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic, 128:277-298, 2004.
  • [10] P. du Boucher-Ryana and D. Bridge. Collaborative recommending using formal concept analysis. Knowledge-Based Systems, 19(5):309-315, 2006.
  • [11] A. Formica. Concept similarity in formal concept analysis: An information content approach. Knowledge-Based Systems, 21(1):80-87, 2008.
  • [12] B. Ganter. Relational Galois connections. Lect Notes in Computer Science 4390:1-17, 2007
  • [13] B. Ganter and R. Wille. Formal concept analysis. Springer-Verlag, 1999.
  • [14] G. Georgescu, A. Popescu: Non-dual fuzzy connections. Archive for Mathematical Logic 43:1009-1039, 2004.
  • [15] J. Goguen. The logic of inexact concepts. Synthese 19:325-373, 1969.
  • [16] G. Jiang, K. Ogasawara, A. Endoh, and T. Sakurai. Context-based ontology building support in clinical domains using formal concept analysis. International Journal of Medical Informatics, 71(1):71-81, 2003.
  • [17] J. Konecny. Isotone fuzzy Galois connections with hedges. Information Science, 181:1804-1817, 2011.
  • [18] S. Krajči. A generalized concept lattice. Logic Journal of IGPL, 13(5):543-550, 2005.
  • [19] S. Krajči. A categorical view at generalized concept lattices. Kybernetika, 43(2):255-264, 2007.
  • [20] O. Kridlo, M. Ojeda-Aciego, On the L-fuzzy generalization of Chu correspondences, International Journal of Computer Mathematics 88(9): 1808-1818, 2011.
  • [21] O. Kridlo, S. Krajči, and M. Ojeda-Aciego, L-bonds vs extents of direct products of two L-fuzzy contexts. In Proc. of Concept Lattices and Applications, CLA 2010, pages 70-79, 2010
  • [22] M. Krötzsch, P. Hitzler, G-Q. Zhang, Morphisms in Context. Lecture Notes in Computer Science 3596:223-237, 2005
  • [23] Y. Lei and M. Luo. Rough concept lattices and domains. Annals of Pure and Applied Logic, 159(3), 333-340, 2009.
  • [24] X. Liu, W. Wang, T. Chai, and W. Liu. Approaches to the representations and logic operations of fuzzy concepts in the framework of axiomatic fuzzy set theory (I) and (II). Information Sciences, 177(4):1007-1026, and 1027-1045, 2007.
  • [25] J. Medina, and M. Ojeda-Aciego. Multi-adjoint t-concept lattices. Information Sciences, 180(5): 712-725,2010.
  • [26] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems, 160(2):130-144, 2009.
  • [27] H. Mori. Chu Correspondences. Hokkaido Matematical Journal, 37:147-214, 2008
  • [28] V. Phan-Luong. A framework for integrating information sources under lattice structure. Information Fusion, 9:278-292, 2008.
  • [29] R.A.G. Seely Linear logic, *-autonomous categories and cofree coalgebras. In Categories in Computer Science and Logic, vol 92 of Contemporary Mathematics, pages 371-382, American Math. Soc., 1989.
  • [30] L. Wang and X. Liu. Concept analysis via rough set and AFS algebra. Information Sciences, 178(21):4125-4137, 2008.
  • [31] Q. Wu and Z. Liu. Real formal concept analysis based on grey-rough set theory. Knowledge-Based Systems, 22(1):38-45, 2009.
  • [32] G.Q. Zhang, Chu spaces, concept lattices, and domains, Electronic Notes in Theoretical Computer Science 83 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0024-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.