PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of NOx emission reduction from combustion process using sewage sludge gasification gas as an additional fuel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwość obniżenia emisji NOx z procesów spalania przy użyciu gazu ze zgazowania osadów ściekowych jako paliwa dodatkowego
Języki publikacji
EN
Abstrakty
EN
In the paper, a numerical simulation of the co-combustion process of sewage sludge gasification syngas in a hard coal-fired boiler was done. Two different syngases (SS1 and SS2) were taken in consideration. Additional (reburning) fuel was injected into the combustion chamber, which was modeled as a plug flow reactor (PFR). The molar flow rates ratio of reburning fuel is assumed to be 5.0%, 7.5%, 10.0%, 12.5% and 15.0% of the whole exhaust. The simulations were conducted for constant pressure equal to 1atm for temperatures range from 600 to 1400 K. It was assumed that a flue gases which enters the reburning zone contains 300 ppm of NO and that during combustion only NO is formed without other NOx. Results show that that gas from sewage sludge gasification gives reburning efficiency of up to 90%. Calculation shows also an optimum value of temperature reburning for gas from sewage sludge gasification which is equal to 1200 K. The type of the sewage sludge has no strong influence on the NO reduction.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] Abian M., Silva S.L., Millera A., Bilbao R., Alzueta M.: Effect of operating conditions on NO reduction by acetylene-ethanol mixtures, Fuel Proces. Technol., 91, 1204-1211 (2010).
  • [2] Adams B.R., Harding N.S.: Reburning using biomass for NOx control, Fuel Proces. Technol., 54, 249-263 (1998).
  • [3] Barba D., Prisciandaro M., Salladini A., Mazziotti di Celso G.: The Gibbs Free Energy Gradient Method for RDF gasification modeling, Fuel, 90, 1402-1407 (2011).
  • [4] Buczynski R., Szlęk A.: Estimation of reburning potential of syngas and pyrolysis gas, Chem. Process. Eng., 28, 189-197 (2007).
  • [5] Cariln N.T., Annamalai K., Harman W.L., Sweeten J.M.: The economics of reburning with cattlemanure-based biomass in existing coal-fired power plants for NOx and CO2 emissions control, Biomass Bioenerg., 33, 1139-1157 (2009).
  • [6] Davis R.D.: The impact of EU and UK environmental pressures on the on the future of sludge treatmentand disposal, J. Ciwem, 10, 65-69 (1996).
  • [7] Dąbrowska L., Rosińska A., Janosz-Rajczyk M.: Heavy metals and PCBs in sewage sludges during thermophilic digestion process, Archives of Environmental Protection, 37 (3), 3-13 (2011).
  • [8] Folsom B.A.: Advanced gas reburning demonstration and commercial gas reburning system upgrade, Fuel and Energy Abstracts, 4, 227 (1997).
  • [9] Folsom B.A., Sommer T.M., Payne R.: Demonstration of combined NOx and SO2 emission control technologies involving gas reburning, In AFRE-JFRC International Conference on Environmental Control of Combustion Processes, Honolulu (1991).
  • [10] Frassoldati A., Faravelli T., Ranzi E.: The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds, Int. J. Hydrogen Energ., 32, 3471-3485 (2007).
  • [11] Gimenez-Lopez J., Arnada V., Millera A., Bilbao R., Alzueta M.U.: An experimental parametric study of gas reburning under conditions of interest for oxy-fuel combustion, Fuel Process. Technolog., 92, 582-589 (2011).
  • [12] Hardy T.: Efficiency of NOx reduction from pulverized boilers using reburning, Archiwum Spalania, 2-4, 33-49 (2003).
  • [13] Khan A.A., de Jong W., Jansens P.J., Spliethoff H.: Biomass combustion in fluidized bed boilers: Potential problems and remedies, Fuel Process. Technol., 90, 21-50 (2009).
  • [14] Kim J.-W., Mun T.-Y., Kim J.-O., Kim J.-S.: Air gasification of mixed plastic wastes using a two-stage gasifier for the production of producer gas with low tar and high caloric value, Fuel, 90, 2266-2272 (2011).
  • [15] Konieczyński J., Zajusz-Zubek E.: Distribution of selected trace elements in dust containment and flue gas desulphurization products from coal-fired power plants, Archives of Environmental Protection, 37 (2), 3-14 (2011).
  • [16] Lundin M., Olofsson M., Pettersson G., Zetterlund H.: Environmental and economic assessment of sewage sludge handling options, Resuurce Conservat. Recycl., 41, 255-278 (2004).
  • [17] Mondal P., Dang G.S., Garg M.O.: Syngas production through gasification and cleanup for downstream applications - recent developments, Fuel Proces. Technol., 92, 1395-1410 (2011).
  • [18] Maly P.M., Zamansky V.M., Ho L., Payne R.: Alternative fuel reburning. Fuel, 78, 327-334 (1999).
  • [19] Odegaard H., Paulsrud B., Karlsson I.: Wastewater sludge as a resource: sludge disposal strategies and corresponding treatment technologies aimed at sustainable handing of wastewater sludge. Water. Sci. Technol., 46, 295-303 (2002).
  • [20] Phuphuakrat T., Nipattumakul N., Namioka T., Kerdsuwan S.: Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge, Fuel, 89, 2278-2284 (2010).
  • [21] Puig-Arnavat M., Bruno J.C., Coronas A.: Review and analysis of biomass gasification models, Renew. Sust. Energ. Rev., 14, 2841-2851 (2010).
  • [22] Rüdiger H., Greul U., Spliethoff H., Hein K.R.G.: Distribution of fuel nitrogen in pyrolysis products used for reburning. Fuel, 76, 201-205 (1997).
  • [23] Shen B., Yao Q., Xu X.: Kinetic model for natural gas reburning, Fuel Process Technol, 85, 1301-1315 (2004).
  • [24] Smoot L.D., Hill S.C., Xu H.: NOx control through reburning, Prog. Energ. Combust., 24, 385-408 (1998).
  • [25] Spliethoff H., Greul U., Rüdiger H., Hein K.R.G.: Basic effects on NOx emission in air staging and reburning at a bench-scale test facility, Fuel, 75, 560-564 (1996).
  • [26] Szlęk A.: Mathematical modelling of gas combustion kinetic, The Silesian Univeristy of Technology, Gliwice (2004).
  • [27] Werle S.: A reburning process using sewage sludge-derived syngas, Chemical Papers 99-107, 2 (2012), DOI: 10.2478/s11696-011-0098-y.
  • [28] Werle S.: Modeling of the reburning process using sewage sludge-derived syngas, Waste Management 753-758, 4 (2012), DOI: 10.1016/j.wasman.2011.10.013.
  • [29] Werle S., Wilk R.K.: A review of methods for the thermal utilization of sewage sludge: The Polishperspective, Renew Energ., 35, 1914-1919 (2010).
  • [30] Werle S.: Estimation of reburning portential of syngas from sewage sludge pasification process, Chem. Process Eng., 4, 411-421 (2011).
  • [31] Zainal Z.A., Ali R., Lean C.H., Seetharamu K.N.: Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials, Energy Convers Manage., 42, 1499-1515 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0024-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.