Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wzrost szczepów Thermomyces lanuginosus (TSIKL.) wyizolowanych z kompostu i ziaren kawy na substratach celulozowych i na ksylanie przy różnej aktywności wody
Języki publikacji
Abstrakty
The study was to determine the effect of water activity (0.850; 0.900; 0.950; 0.995; and 0.999 aw) on the growth of T. lanuginosus on solid media containing different cellulose substrates (crystalline cellulose, carboxymethyl cellulose – CMC, filter paper, and sawdust) and xylan. The growth of isolates from coffee beans and garden composts were compared. All isolates did not grow on media with aw < 0.950. On media with aw > 0.950, the hydrolysis zones were only observed on xylan and CMC. The highest daily growth and hydrolysis zone rates were mostly obtained at 0.995 aw and the lowest values were observed at 0.950 aw. The coffee beans isolates at 0.950 aw had the CMC hydrolysis coefficient 1.7-times higher than that for xylan. The fungal growth (FG) coefficient data indicate that the coffee beans isolates were able to utilize CMC and crystalline cellulose for growth and the highest growth rate was obtained at 0.999 aw. Subsequently, the compost isolates were able to grow on all substrates but the highest growth rate was obtained on CMC at 0.950 and 0.999 aw. Thus, coffee beans and composts provide T. lanuginosus isolates with various growth and hydrolytic zone rates in the range of 0.950-0.999 aw.
Badano wpływ różnych aktywności wody aw (0,850; 0,900; 0,950; 0,995; 0,999) na wzrost grzyba Thermomyces lanuginosus (Tsikl.) na pożywkach zawierających różne źródła celulozy (celulozę krystaliczną, karboksymetylocelulozę – CMC, bibułę fi ltracyjną i trociny) oraz ksylan. W badaniach wykorzystano szczepy T. lanuginosus wyizolowane z zapleśniałego ziarna kawy i kompostu. Całkowita inhibicja wzrostu dotyczyła pożywek o aktywności wody aw < 0,950. Strefa hydrolizy obserwowana była jedynie na pożywkach o aktywności wody aw > 0,950, zawierających ksylan lub CMC. Największe wartości dziennego przyrostu kolonii i strefy hydrolizy obserwowano przy aktywności wody w pożywce wynoszącej 0,995, a najmniejsze przy aw = 0,950. Szczepy T. lanuginosus wyizolowane z kawy, na pożywkach o aw = 0,950 charakteryzowały się 1,7 razy wyższym współczynnikiem hydrolizy celulozy w stosunku do ksylanu. Na podstawie współczynnika wzrostu grzybów (FG) stwierdzono, że szczepy z kawy są zdolne do przetwarzania celulozy krystalicznej i CMC na pożywkach o wysokiej aktywności wody (0,999). Szczepy z kompostu rosły na wszystkich badanych źródłach celulozy i ksylanu, przy czym najlepsze parametry wzrostu uzyskiwano na pożywkach o aktywności wody 0,950 i 0,999.
Czasopismo
Rocznik
Tom
Strony
73--80
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
autor
autor
- Department of Biotechnology, Institute of Chemical and Environment Engineering Pomeranian Medical University in Szczecin 70-204 Szczecin, Rybacka 1, agata@erb.pl
Bibliografia
- [1] Alam M., Gomes I., Mohiuddin G., Hoq M.: Production and characterization of thermostable xylanasesby Thermomyces lanuginosus and Thermoascus aurantiacus grown on lignocelluloses, Enzyme and Microbiolal Technology, 16, 298-302 (1994).
- [2] Biłaj T.I.: Tiermostabilnyje fiermienty gribow, Izd. Naukowa Dumka, Kijew (1979).
- [3] Chaves V.M.G., Silva D.O., Brune W., Moreira M.A.: Cellulolytic activities of Humicola sp. Review of Microbiology, 20, 460-465.
- [4] Colins T., Gerday C., Feller G.: Xylanases, xylanase families and extremophilic xylanases, FEMS Microbiology Review, 29, 3-23 (1989).
- [5] Coronel L.M., Joson L.M., Mesina O.G.: Isolation and screening of thermophilic fungi for cellulose production, The Philippine Journal of Science, 120, 379-389 (1991).
- [6] Dantigny P., Guilmart A., Bensoussan M.: Basis of predictive mycology, International Journal of Food Microbiology, 100, 187-196 (2001).
- [7] Domsch K.H., Gams W., Anderson T.H.: Compedium of Soil Fungi, Lubrecht & Cramer Ltd., Port Jervis (1995).
- [8] Fergus C.L.: The cellulolytic activity of thermophilic fungi and actinomycetes, Mycologia, 61, 120-129 (1969).
- [9] Gock M.A., Hocking A.D., Pitt J.I., Poulos P.G.: Influence of temperature, water activity and pH on growth of some xerophilic fungi, International Journal of Food Microbiology, 81, 11-19 (2003).
- [10] Gogou E., Katapodis P., Christakopoulos P., Taoukis P.S.: Effect of water activity on the thermal stability of Thermomyces lanuginosus xylanases for process time - temperature integration, Journal of Food Engineering, 100, 649-655 (2010).
- [11] Haki G.D., Rakshit S.K.: Developments in industrially important thermostable enzymes a review. Bioresource Technology, 89, 17-34 (2003).
- [12] Haltrich D., Nidetzky B., Kulbe K.D., Steiner W., Zupancic S.: Production of fungal xylanases, Bioresource Technology, 58, 137-161 (1996).
- [13] Hoq M.M., Hempel C., Deckwer W.D.: Cellulase-free xylanase by Thermomyces lanuginosus RT9: Effect of agitation, aeration, and medium components on production, Journal of Biotechnology, 37, 49-58 (1994).
- [14] Janda K.: The lipolytic activity of Thermomyces lanuginosus strains isolated from different natural sources, International Biodeterioration & Biodegradation, 55, 149-152 (2005).
- [15] Jatinder K., Chadha B.S., Saini H.S.: Optimization of culture conditions for production of cellulasesand xylanases by Scytalidium thermophilum using response surface methodology, World Journal of Microbiology and Biotechnology, 22, 169-176 (2006).
- [16] Kamra P., Satyanarayam T.: Xylanase production by the thermophilic mold Humicola lanuginosa in solid state fermentation. Applied Biochemistry and Biotechnology, 119, 145-157 (2004).
- [17] Konopka M., Kowalski Z., Wzorek Z.: Disinfection of meat industry equipment and production roomswith the use of liquids containing silver nano-particles, Archives of Environmental Protection, 35 (1), 107-116 (2009).
- [18] Kulkarni N., Shendye A., Rao M.: Molecular and biotechnological aspects of xylanases, FEMS Microbiology Review, 23, 411-456 (1999).
- [19] Lang A.R.G.: Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40°C, Australian Journal of Chemistry, 20, 2017-2023 (1967).
- [20] Laroche C., Fine F., Gervais P.: Water activity affects heat resistance of microorganisms in food powders, International Journal of Food Microbiology, 97, 307-315 (2005).
- [21] Maheshwari R., Bharadwaj G., Bhat M.K.: Thermophilic fungi: their physiology and enzymes, Microbiology and Molecular Biology Review, 64, 461-488 (2000).
- [22] Olutiola P.O.: Characterization of cellulase from Humicola lanuginose, Experientia, 38, 1332-1333 (1982).
- [23] Pandey A., Soccol C.R., Nigam P., Brand D., Mohan R., Roussos S.: Biotechnological potential of coffeepulp and coffee husk for bioprocesses, Biochemical Engeenering Journal, 6, 153-162 (2000).
- [24] Pereira J.A.S.Jr., Correia M.J., Oliveira T.: Cellulase activity of Lentinula edodes (Berk.) Pegl. Strain grown in media containing CMC or microcrystalline cellulose, Brazilian Archives of Biology and Technology, 46, 333 337 (2003).
- [25] Rosenberg S.L.: Cellulose and lignocellulose degradation by thermophilic and thermotolerant fungi, Mycologia, 70, 1-13 (1978).
- [26] Rosgaard L., Pedersen S., Cherry J.R., Harris P., Meyer A.S.: Efficiency of new fungal cellulases systemsin boosting enzymatic degradation of barley straw lignocelluloses, Biotechnology Progress, 22, 493-498 (2006).
- [27] Rosso L., Robinson T.P.: A cardinal model to describe the effect of water activity on the growth of moulds, International Journal of Food. Microbiology, 63, 265-273 (2001).
- [28] Singh S., Madlala A.M., Bernard A.P.: Thermomyces lanuginosus properties of strains and theirhemicellulases, FEMS Microbiology Review, 27, 3-16 (2003).
- [29] Tansey M.R.: Agar-diffusion assay of cellulolytic ability of thermophilic fungi, Archives of Mikrobiology, 77, 1-11 (1971).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0024-0007