PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Correlating Fuzzy and Rough Clustering

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the gaining popularity of rough clustering, soft computing research community is studying relationships between rough and fuzzy clustering as well as their relative advantages. Both rough and fuzzy clustering are less restrictive than conventional clustering. Fuzzy clustering memberships are more descriptive than rough clustering. In some cases, descriptive fuzzy clustering may be advantageous, while in other cases it may lead to information overload. Many applications demand use of combined approach to exploit inherent strengths of each technique. Our objective is to examine correlation between these two techniques. This paper provides an experimental description of how rough clustering results can be correlated with fuzzy clustering results. We illustrate procedural steps to map fuzzy membership clustering to rough clustering. However, such a conversion is not always necessary, especially if one only needs lower and upper approximations. Experiments also show that descriptive fuzzy clustering may not always (particularly for high dimensional objects) produce results that are as accurate as direct application of rough clustering. We present analysis of the results from both the techniques.
Rocznik
Strony
233--246
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
autor
autor
  • Department of Computer Science, North Maharashtra University, Jalgaon, Maharashtra, India, joshmanish@gmail.com
Bibliografia
  • [1] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, MA, USA, 1981, ISBN 0306406713.
  • [2] Bezdek, J. C., Hathaway, R. J.: Optimization of Fuzzy Clustering Criteria Using Genetic Algorithms, International Conference on Evolutionary Computation, 1994.
  • [3] Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, 3(3), 1973, 32-57.
  • [4] Frank, A., Asuncion, A.: UCI Machine Learning Repository, 2010.
  • [5] Hartigan, J. A., Wong, M. A.: Algorithm AS 136: A k-means clustering algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 1979, 100-108, ISSN 00359254.
  • [6] Ho, T. B., Nguyen, N. B.: Nonhierarchical document clustering based on a tolerance rough set model, International Journal of Intelligent Systems, 17(2), 2002, 199-212.
  • [7] Hong, T.-P., Tseng, L.-H., Chien, B.-C.: Mining from incomplete quantitative data by fuzzy rough sets, Expert Systems with Applications, 37(3), 2010, 2644 - 2653, ISSN 0957-4174.
  • [8] Joshi, A., Krishnapuram, R.: Robust Fuzzy Clustering Methods to Support Web Mining, Proc. Workshop in Data Mining and knowledge Discovery, SIGMOD, 1998.
  • [9] Joshi, M., Lingras, P.: Evolutionary and Iterative Crisp and Rough Clustering I: Theory, in: Pattern Recognition and Machine Intelligence (S. Chaudhury, S. Mitra, C. Murthy, P. Sastry, S. Pal, Eds.), vol. 5909 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2009, 615-620.
  • [10] Joshi, M., Lingras, P.: Evolutionary and Iterative Crisp and Rough Clustering II: Experiments, in: Pattern Recognition and Machine Intelligence (S. Chaudhury, S. Mitra, C. Murthy, P. Sastry, S. Pal, Eds.), vol. 5909 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2009, 621-627.
  • [11] Lingras, P.: Evolutionary Rough K-Means Clustering, Proceedings of the 4th International Conference on Rough Sets and Knowledge Technology, RSKT '09, Springer-Verlag, Berlin, Heidelberg, 2009, ISBN 978-3-642-02961-5.
  • [12] Lingras, P., Chen, M., Miao, D.: Precision of Rough Set Clustering, in: Rough Sets and Current Trends in Computing (C.-C. Chan, J. Grzymala-Busse, W. Ziarko, Eds.), vol. 5306 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008, 369-378.
  • [13] Lingras, P., Chen, M., Miao, D.: Rough Multi-category Decision Theoretic Framework, in: Rough Sets and Knowledge Technology (G. Wang, T. Li, J. Grzymala-Busse, D. Miao, A. Skowron, Y. Yao, Eds.), vol. 5009 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008, 676-683.
  • [14] Lingras, P., Hogo, M., Snorek, M.: Interval set clustering of web users using modified Kohonen selforganizingmaps based on the properties of rough sets, Web Intelli. and Agent Sys., 2, August 2004, 217-225, ISSN 1570-1263.
  • [15] Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough K-Means, Journal of Intelligent Information Systems, 23, 2004, 5-16, ISSN 0925-9902.
  • [16] MacQueen, J. B.: Some Methods for Classification and Analysis of MultiVariate Observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability (L. M. L. Cam, J. Neyman, Eds.), 1, University of California Press, 1967.
  • [17] Maji, P., Pal, S. K.: Rough Set Based Generalized Fuzzy C-Means Algorithmand Quantitative Indices., IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(6), 2007, 1529-1540.
  • [18] Mitra, S.: An evolutionary rough partitive clustering., Pattern Recognition Letters, 25(12), 2004, 1439-1449.
  • [19] Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27(5), 1997, 787-795.
  • [20] Peters, G.: Some refinements of rough k-means clustering, Pattern Recognition, 39(8), 2006, 1481 - 1491, ISSN 0031-3203.
  • [21] Peters, J. F., Skowron, A., Suraj, Z. e. a.: Clustering: A Rough Set Approach to Constructing Information Granules, Soft Computing and Distributed Processing, 2002, 57 - 61.
  • [22] Saad, M. F., Alimi, A. M.: Modified Fuzzy Possibilistic C-means, Proceedings of the International Multi-Conference of Engineers and Computer Scientists, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.