PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Knowledge Reduction in Random Incomplete Decision Tables via Evidence Theory

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Statisticians and database users often encounter the problem of missing or imprecise data obtained by a random experiment. Such a data set is called a random incomplete information table. In this paper, we study knowledge reduction in random incomplete information tables and random incomplete decision tables by using a hybrid model based on the rough set theory and the Dempster- Shafer theory of evidence. The concepts of random belief reducts and random plausibility reducts in random incomplete information tables and random incomplete decision tables are introduced. The relationships among the lower approximation reduct, the upper approximation reduct, the random belief reduct, the random plausibility reduct, and the classical reduct in random incomplete decision tables are examined.
Wydawca
Rocznik
Strony
203--218
Opis fizyczny
Bibliogr. 37 poz., tab.
Twórcy
autor
  • School of Mathematics, Physics and Information Science Zhejiang Ocean University Zhoushan, Zhejiang 316004, P. R. China, wuwz@zjou.edu.cn
Bibliografia
  • [1] Beynon, M.: Reducts within the variable precision rough sets model: A further investigation, European Journal of Operational Research, 134, 2001, 592-605.
  • [2] Choquet, G.: Theory of capacities, Annales de l'institut Fourier, 5, 1954, 131-295.
  • [3] Guan, Y. Y., Wang, H. K.:, Set-valued information systems, Information Sciences, 176, 2006, 2507-2525.
  • [4] Jaffray, J. Y.: On the maximum of conditional entropy for upper/lower probabilities generated by random sets, in: Random Sets: Theory and Applications (J. Goutsias, R. P. S.Mahler, H. T. Nguyen, Eds.), Springer-Verlag, New York, 1997, 107-127.
  • [5] Kryszkiewicz, M.: Rough set approach to incomplete information systems, Information Sciences, 112, 1998, 39-49.
  • [6] Kryszkiewicz, M.: Rules in incomplete information systems, Information Sciences, 113, 1999, 271-292.
  • [7] Leung, Y., Wu, W.-Z., Zhang,W.-X.: Knowledge acquisition in incomplete information systems: A rough set approach, European Journal of Operational Research, 168, 2006, 164-180.
  • [8] Li, D. Y., Zhang, B., Leung, Y.: On knowledge reduction in inconsistent decision information systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12, 2004, 651-672.
  • [9] Lingras, P. J., Yao, Y. Y.: Data mining using extensions of the rough set model, Journal of the American Society for Information Science, 49, 1998, 415-422.
  • [10] Matheron, G.: Random Sets and Integral Geometry,Wiley, New York, 1975.
  • [11] Mi, J.-S., Wu, W.-Z., Zhang,W.-X.: Approaches to knowledge reductions based on variable precision rough sets model, Information Sciences, 159, 2004, 255-272.
  • [12] Nguyen, H. T.: Some mathematical structures for computational information, Information Sciences, 128, 2000, 67-89.
  • [13] Nguyen, H. S., Slezak, D.: Approximation reducts and association rules correspondence and complexity results, Lecture Notes in Artificial Intelligence, 1711, 1999, 137-145.
  • [14] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning aboutData, Kluwer Academic Publishers, Boston, 1991.
  • [15] Pawlak, Z., Skowron, A.: A rough set approach to decision rules generation, in: Proceedings of theWorkshop W12: The Management of Uncertainty in AI at 13th IJCAI, Chambery Savoie, France, August 30, 1993, 1-19.
  • [16] Qian, Y. H., Dang, C. Y., Liang, J. Y., Tang, D. W.: Set-valued ordered information systems, Information Sciences, 179, 2009, 2809-2832.
  • [17] Qian, Y. H., Liang, J. Y., Dang, C. Y.: Incomplete multigranulation rough set, IEEE Trasactions on Systems, Man and Cybernetics-Part A, 40, 2010, 420-431.
  • [18] Qian, Y. H., Liang, J. Y., Li, D. Y., Wang, F., Ma, N. N.: Approximation reduction in inconsistent incomplete decision tables, Knowledge-Based Systems, 23, 2010, 427-433.
  • [19] Salama, A. S.: Topological solution of missing attribute values problem in incomplete information tables, Information Sciences, 180, 2010, 631-639.
  • [20] Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976.
  • [21] Skowron, A.: The relationship between rough set theory and evidence theory, Bulletin of the Polish Academy of Sciences: Mathematics, 37, 1989, 87-90.
  • [22] Skowron, A.: The rough sets theory and evidence theory, Fundamenta Informaticae, 13, 1990, 245-262.
  • [23] Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory, in: Advance in the Dempster-Shafer Theory of Evidence (R. R. Yager, M. Fedrizzi, J. Kacprzyk, Eds.),Wiley, New York, 1994, 193-236.
  • [24] Skowron, A., Stepaniuk, J., Swiniarski, R. W.: Approximation spaces in rough-granular computing, Fundamenta Informaticae, 100, 2010, 141-157.
  • [25] Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification, Computational Intelligence, 17, 2001, 545-566.
  • [26] Wu, W.-Z.: Attribute reduction based on evidence theory in incomplete decision systems, Information Sciences, 178, 2008, 1355-1371.
  • [27] Wu, W.-Z.: Rough set approximations based on random sets, 2007 IEEE International Conference on Granular Computing, Silicon Valley, California, 2-4 November, 2007, pp. 213-216.
  • [28] Wu, W.-Z., Leung, Y., Mi, J.-S.: On generalized fuzzy belief functions in infinite spaces, IEEE Transactions on Fuzzy Systems, 17, 2009, 385-397.
  • [29] Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence, International Journal of General Systems, 31, 2002, 405-430.
  • [30] Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence, Information Sciences, 174, 2005, 143-164.
  • [31] Yao, Y. Y.: Interpretations of belief functions in the theory of rough sets, Information Sciences, 104, 1998, 81-106.
  • [32] Yao, Y. Y.: Generalized rough set models, in: Rough Sets in Knowledge Discovery: 1. Methodology and Applications (L. Polkowski, A. Skowron, Eds.), Physica-Verlag, Heidelberg, 1998, 286-318.
  • [33] Yao, Y. Y.: Three-way decisions with probabilistic rough sets, Information Sciences, 180, 2010, 341-353.
  • [34] Zhang, M., Xu, L. D., Zhang, W.-X., Li, H.-Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory, Expert Systems, 20, 2003, 298-304.
  • [35] Zhang,W.-X., Leung, Y.,Wu,W.-Z.: Information Systems and Knowledge Discovery, Science Press, Beijing, 2003.
  • [36] Zhang, W.-X., Mi, J.-S.: Incomplete information system and its optimal selections, Computers and Mathematics with Applications, 48, 2004, 691-698.
  • [37] Zhang, W.-X., Mi, J.-S., Wu, W.-Z.: Approaches to knowledge reductions in inconsistent systems, International Journal of Intelligent Systems, 18, 2003, 989-1000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.