PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exposure to chlorine affects the extracellular polymeric substance production and cell surface hydrophobicity in biofilm bacteria

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chlorination is a common antifouling method adopted by industrial units to minimize the fouling growth on cooling systems. In the present study, the effect of sodium hypochlorite on extracellular polymeric substance (EPS) production, hydrophobicity, cell adhesion and viability of marine bacteria involved in biofilm formation were assessed in laboratory condition. Two bacterial strains, tentatively identified as Alteromonas sp. and Pseudomonas sp. isolated from the surface of seaweeds were used as test organisms for the present study. The bacterial cultures were treated with sodium hypochlorite at 25% of the minimum inhibitory concentration. Results showed considerable variation in the production of EPS, viable counts, hydrophobicity and adhesion ability of bacteria treated with sodium hypochlorite. In general, the present study indicated that chlorination affects some important characteristics involved in the biofilm formation and thereby reduces the adhesion rate on surfaces.
Rocznik
Strony
17--24
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
autor
  • Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Pannaiyoor, Rajakamangalam-629502, Kanyakumari District, Tamil Nadu, India, satheesh_s2005@yahoo.co.in
Bibliografia
  • 1.Anbananthan, N. (2008). Control of biofouling and concomitant biocorrosion using Chlorine dioxide. In symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries (OPENWAC -2008) 15-16 December 2008 (pp 154-158). Kalpakkam, India: Water and Steam Chemistry division, BARC.
  • 2.Bos, R., Van der Mei, H.C.& Busscher, H.J. (1999). Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179-230.
  • 3.Bott, T.R. (1999). Biofilms in process and industrial waters: the biofilm ecology of microbial biofouling, biocide resistance and corrosion. In C.W. Keevil, A. Godfree, D. Holt, & C. Dow (Eds.), Biofilms in the Aquatic Environment (pp. 80-92). London: Royal Society of Chemistry.
  • 4.Bunt, R., Jones, S.& Tucker, G. (1993). The effects of pH, ionic strength and organic phase on the bacterial adhesion to hydrocarbons (BATH) test. Int. J. Pharm. 99, 93-98.
  • 5.Busscher, H.J. & Van der Mei, H.C. (2000). Initial microbial adhesion events: Mechanisms and implications. In D.G. Allison, P. Gillbert, H.M. Lappin-Scott & M. Wilson (Eds.), Community structure and co-operation in biofilms (pp. 25-36). Cambridge, UK: Cambridge University press.
  • 6.Caccavo, F.Jr., Schamberger, P.C., Keiding, K.& Neilson, P.H. (1997). Role of hydrophobicity in adhesion of the dissimilatory Fe(III) oxide. Appl. Environ. Microbiol. 63, 3837-3843.
  • 7.Chapman, J.J. (2003). Biocide resistance mechanism. Int. Biodeterior. Biodegrad. 51, 133-138.
  • 8.Cross, J.B., Currier, R.P., Torraco, D.J., Vanderberg, L.A., Wagner, G.L.& Laden, P.D. (2003). Killing of Bacillus spores by aqueous dissolved oxygen, ascorbic acid and copper ions. Appl. Environ. Microbiol. 69, 2245-2252.
  • 9.Decho, A.W. (1990). Microbial expolymer secretions in ocean environments: their role in food webs and marine processes. Oceanogr. Mar. Biol. Ann. Rev. 28, 73-153.
  • 10.D'souza, F. & Bhosle, N.B. (2003). Analysis of microfouling products formed on metallic surfaces exposed in a marine environment. Biofouling 19, 95-107.
  • 11.Dubois, M. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356.
  • 12.Hassett, D.J., Elkins, J.G., Ma, J.F.& McDermott, T.R. (1999). Pseudomonas aeruginosa biofilm Sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. Methods Enzymol. 310, 599-608.
  • 13.Jain, A., Nishad, K.K., Narayan, K.K.& Bhosle, B. (2007). Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces. Biofouling 23, 171-177.
  • 14.Jenner, H.A., Taylor, C.J.L., Van Donk, M.& Khalanski, M. (1997). Chlorination by-products in chlorinated cooling water of some European coastal power stations. Mar. Environ. Res. 43, 279-293.
  • 15.Jenner, H.A., Whitehouse, J.W., Taylor, C.J.L. & Khalanski, M. (1998). Cooling water management in European power stations: biology and control. Hydroecologie Applique e 1-2 (pp. 1-225), Chatou, Paris: Electricite' de France.
  • 16.Korber, D.R., Lawrence, J.R., Sulton, B.& Caldwell, D.E. (1989). Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot-Pseudomonas fluorescens. Microb. Ecol. 18, 1-19.
  • 17.Leroy, C., Delbarre-Ladrat, C., Ghillebaert, F., Rochet, M.J., Compere, C. & Combes, D. (2007). A marine bacterial adhesion microplate test using the DAPI flourescent dye: a new method to screen antifouling agents. Lett. Appl. Microbiol. 44, 372.
  • 18.Lowry, O., Rosebroug, H., Farr, A. & Randall, R. (1951). Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265-275.
  • 19.Ludensky, M. (2003). Control and monitoring of biofilms in industrial application. Int. Biodeterior. Biodegrad. 51, 255-263.
  • 20.Murthy, P.S., Venkatesan, R., Nair, K.V.K.& Ravindran, M. (2004). Biofilm control for plate heat exchangers using surface seawater from the open ocean for the OTEC power plant. Int. Biodeterior. Biodegrad. 53, 133-140.
  • 21.Nair, K.V.K., Satpathy, K.K. & Venugobalan, V.P. (1997). Biofouling control: Current methods and new approaches with emphasis on power plant cooling water systems. In R. Nagabhushanam & M.F. Thompson (Eds.), Fouling organisms of the Indian Ocean: Biology and control technology (pp 159-188). New Delhi: Oxford & IBH
  • 22.Nancharaiah, Y.V., Vinnitha, E. & Venugopalan., V.P. (2008). Effect of hypochlorite on the planktonic and attached (biofilm) diatom cells. In symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries (OPENWAC-2008) 15-16 December 2008 (pp 407-409). Kalpakkam, India: Water and Steam Chemistry division, BARC.
  • 23.Phe, M.H., Dossot, M.& Block, J.C. (2004) Chlorination effect on the fluorescence of nucleic acid staining dye. Water Res. 38, 3729-3737
  • 24.Rajagopal, S., Venugopalan, V.P., Van der Velde, G.& Jenner, H.A. (2003). Tolerance of five species of tropical marine mussels to continuous chlorination. Mar. Environ. Res. 55, 277-291
  • 25.Rosenberg, M., Gutnick, D.& Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 9, 29-33.
  • 26.Satpathy, K. K. & Nithila, S.D. (2008). Chlorinaton for biofouling control in power plant cooling water system. In symposium on operational and environmental issues concering use of water as a coolant in power plants and industries. (OPENWAC-2008) 15-16 December 2008 (pp 150-153). Kalpakkam, India: Water and Steam Chemistry division, BARC.
  • 27.Van Loosdrechi, M.C.M., Lyklema, J., Norge, W., Schraa, G. & Zehnder, A.J.B. (1987). Electrophoretic mobility and hyddrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 53, 1898-1901
  • 28.Vandevivere, P.& Kirchman, C.L. (1993). Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl. Environ. Microbiol. 59, 3280-3286.
  • 29.Virto, R., Maoas, P., Alvarez, J., Condon, S.& Raso, J. (2005). Membrane damage and microbial inactivation by chlorine in the presence and absence of a chlorine denaturing substrate. Appl. Environ. Microbiol. 71, 5022-5028.
  • 30.Wahl, M., Jensen, P.R.& Fenical, W. (1994). Chemical control of bacterial epibiosis on Ascidians. Mar. Ecol. Prog. Ser. 110, 45-57.
  • 31.Walsh, S.E., Catrenich, C.E., Charonneau, D.& Bartolo, R.G. (2003). Activity and mechanism of action of selected biocidal agents on Gram-positive and Gram-negative bacteria. J. Appl. Microbiol. 94, 240-247
  • 32.Welch, S.A., Barker, W.W.& Banfield, J.F. (1999). Microbial extracellular polysaccharides and plagioclase dissolution. Geochim. Cosmochim. Acta. 63, 1405-1419.
  • 33.Zhao, Y.H., Ji, G.D., Cronin, M.& Dearden, J.C. (1998). OSAR study of toxicity of benzoic acids to Vibrio fischeri, Dephnia magna and Carp. Sci. Total Environ. 216, 205-215.
  • 34.Zita, A. & Hermansson, M. (1997). Effect of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl. Environ. Microbiol. 63, 1168-1170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.