PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelled quantum yields and energy efficiency of fluorescence, photosynthesis and heat production by phytoplankton in the World Ocean

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the utilization budgets of the excitation energy of phytoplankton pigment molecules activated on absorbing solar radiation under various typical conditions obtaining in the World Ocean. The deactivation of these molecules following the conversion of the excitation energy to the fluorescence of chlorophyll a, the photosynthesis of organic matter and heat is taken into account. To this end, a great many model computations were performed; these made use of the authors' earlier models of the dependence of the quantum yields and energy efficiencies of the above processes on the three principal environmental factors governing the functioning of marine plant communities: the chlorophyll a concentration in the surface water layer (the trophic index of waters), temperature and the underwater irradiance at different depths in the sea. These model relationships were used to determine vertical profiles of the quantum yields and energy efficiencies of the chlorophyll a fluorescence, photosynthesis and heat production by phytoplankton in different trophic types of sea in three different climatic zones (tropical, temperate and polar), in two seasons of the year - June (summer in the northern hemisphere) and January (winter in the northern hemisphere). The results of the calculations are given for areas of oceanic Case 1 waters, which cover more than 90% of the volume of all basins in the World Ocean (according to the optical classification by Morel & Prieur 1977). The results of these calculations, though preliminary, provide a comprehensive description of the range of variability of the yields / efficiencies of the three deactivation processes. The results have made it possible to summarize, within the context of the euphotic zone, of the budgets of phytoplankton pigment molecule excitation energy expended on three complementary processes, namely, the fluorescence of chlorophyll a, the photochemical assimilation of inorganic carbon and the photosynthesis of organic matter, and the radiationless, nonphotochemical conversion of the pigment molecules' activation energy to heat.
Czasopismo
Rocznik
Strony
565--610
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland;
Bibliografia
  • 1.Antoine D., Andre J.M., Morel A., 1996, Oceanic primary production: 2, Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cyc., 10 (1), 56-69, http://dx.doi.org/10.1029/95GB02832
  • 2.Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cyc., 10 (1), 42-55, http://dx.doi.org/10.1029/95GB02831
  • 3.Armbrust E.V., 2009, The life of diatoms in the world's oceans, Nature, 459, 185- 192, http://dx.doi.org/10.1038/nature08057
  • 4.Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowski P.G., 1996, Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems, Deep-Sea Res., 43 (8), 1241-1272, http://dx.doi.org/10.1016/0967-0637(96)00058-1
  • 5.Babin M., Therriault J.C., Legendre L., Nieke B., Reuter R., Condal A., 1995, Relationship between the maximum quantum yield of carbon fixation and the minimum quantum yield of chlorophyll a in vivo fluorescence in the Gulf of St. Lawrence, Limnol. Oceanogr., 40 (5), 956-968, http://dx.doi.org/10.4319/lo.1995.40.5.0956
  • 6.Bartley G.E., Scolnik P.A., 1995, Plant carotenoids: pigments for photoprotection, visual attraction, and human health, Plant Cell., 7 (7), 1027-1038, http://dx.doi.org/10.2307/3870055
  • 7.Butler W. L., Kitajima M., 1975, Fluorescence quenching in photosystcm II of chloroplasts, Biochim. Biophys. Acta, 376 (1), 116-125, http://dx.doi.org/10.1016/0005-2728(75)90210-8
  • 8.Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.
  • 9.Falkowski P. (ed.), 1980, Primary productivity in the sea, Env. Sci. Res., 19, Plenum Press, New York, 531 pp., http://dx.doi.org/10.1007/978-1-4684-3890-1
  • 10.Ficek D., 2001, Modelling the quantum yield of photosynthesis in various marine systems, Diss. and monogr., 14, Inst. Oceanol. PAS, Sopot, 224 pp., (in Polish).
  • 11.Gershanovich D.E., Muromcev A.M., 1982, Okeanologicheskie osnovy biologicheskoj produktyvnosti mirovogo okeana, Gidrometeoizdat, Leningrad, 32 pp.
  • 12.Glantz M.H. (ed.), 1988, Societal responses to regional climate change. Forecasting by analogy, West View Press, Boulder-London, 403 pp.
  • 13.Govindjee (ed.), 1975, Bioenergetics of photosynthesis, Acad. Press, New York, 698 pp.
  • 14.Huot Y., Brown C.A., Cullen J. J., 2005, New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products, Limnol. Oceanogr. Meth., 3, 108-130, http://dx.doi.org/10.4319/lom.2005.3.108
  • 15.Huot Y., Brown C.A., Cullen J. J., 2007, Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient and Sun-induced fluoresence in coastal waters, J. Geophys. Res., 112, C06013, http://dx.doi.org/10.1029/2006JC003794
  • 16.Ke B., 2003, Photosynthesis Photobiochemistry and Photobiophysics, Kluwer Acad. Publ., New York, 792 pp.
  • 17.Kellogg W.W., 1988, Human impact on climate, The evolution of an awareness, [in:] Societal responses to regional climate change. Forecasting by analogy, M.H. Glanz (ed.), West View Press, Boulder-London, 9-33.
  • 18.Kirk J.T.O., 1994, Light and photosynthesis in aquatic ecosystems, Cambridge Univ. Press, Gateshead, 509 pp., http://dx.doi.org/10.1017/CBO9780511623370
  • 19.Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu. E., 1985, Utilisation of solar energy in the photosynthesis of the Baltic and Black Sea phytoplankton, Izd. Inst. Okeanol., AN SSSR, Moscow, 336 pp., (in Russian).
  • 20.Kolber Z., Falkowski P.G., 1993, Use of active fluorescence to estimate phytoplankton photosynthesis 'in situ', Limnol. Oceanogr., 38 (8), 1646-1665, http://dx.doi.org/10.4319/lo.1993.38.8.1646
  • 21.Kowda W.A., 1976, Biosphere and man, [in:] Biosphere and its resources, PWN, Warsaw, 9-58, (in Polish).
  • 22.Kożuchowski K., Przybylak R., 1995, Greenhouse effect, Wiedza Powszechna, Warsaw, 220 pp., (in Polish).
  • 23.Lieth H., Whittaker R.H., 1975, Primary productivity of the biosphere, Springer-Verlag, Berlin, 339 pp.
  • 24.Maritorena S., Morel A., Gentili B., 2000, Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat, Appl. Opt., 39 (36), 6725-6737, http://dx.doi.org/10.1364/AO.39.006725
  • 25.Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Stud. i rozpr., 1, Pom. Akad. Pedag., Słupsk, 131 pp., (in Polish).
  • 26.Michael J.B., O’Malley R.T., Siegel D.A., McClain C.R., Sarmiento J. L., Feldman G.C., Milligan A. J., Falkowski P.G., Letelier R.M. Boss E. S., 2006, Climate-driven trends in contemporary ocean productivity, Nature, 444, 752-755, http://dx.doi.org/10.1038/nature05317
  • 27.Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26 (3), 263-306, http://dx.doi.org/10.1016/0079-6611(91)90004-6
  • 28.Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol.Oceanogr., 22 (4), 709-722, http://dx.doi.org/10.4319/lo.1977.22.4.0709
  • 29.Morrison J.R., 2003, In situ determination of quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model, Limnol. Oceanogr., 48 (2), 618-631.
  • 30.Najafpour M.M. (ed.), 2012, Advances in photosynthesis - fundamental aspects, InTech, Rijeka, 588 pp., http://dx.doi.org/10.5772/1385
  • 31.OstrowskaM., 2001, The application of fluorescence methods to the study of marine photosynthesis, Diss. and monogr., IO PAS, 15, Sopot, 194 pp., (in Polish).
  • 32.Ostrowska M., 2011, Dependence between the quantum yield of chlorophyll a fluorescence in marine phytoplankton and trophicity in low irradiance level, Opt. Appl., 41 (3), 567-577.
  • 33.Ostrowska M., 2012a, Model of the dependence of the sun-induced chlorophyll a fluorescence quantum yield on the environmental factors in the sea, Opt. Express, 20 (21), 23300-23317, http://dx.doi.org/10.1364/OE.20.023300
  • 34.Ostrowska M., 2012b, Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea, (in this volume).
  • 35.Timofeyev N.A., 1983, Radiation regime of the ocean, Nauk. Dumka, Kiyev, 247, (in Russian).
  • 36.Trenberth K.E. (ed.), 1992, Climate system modelling, Cambridge Univ. Press, New York, 788 pp.
  • 37.Pascal A.A., Liu Z., Broess K., van Oort B., van Amerongen H., Wang C., Horton P., Robert B., Chang W., Ruban A., 2005, Molecular basis of photoprotection and control of photosynthetic light-harvesting, Nature, 436, 134-137, http://dx.doi.org/10.1038/nature03795
  • 38.Steemann Nielsen E., 1975, Marine photosynthesis, with special emphasis on the ecological aspect, Elsevier, Amsterdam-New York, 141 pp., http://dx.doi.org/10.1016/S0422-9894(08)70477-X
  • 39.Westberry T.K., Siegel D.A., 2003, Phytoplankton natural fluorescence variability in the Sargasso Sea, Deep-Sea Res. Pt. I, 50 (3), 417-434, http://dx.doi.org/10.1016/S0967-0637(03)00019-0
  • 40.Weis E., Berry J.T., 1987, Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 894 (2), 198-208, http://dx.doi.org/10.1016/0005-2728(87)90190-3
  • 41.Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011a, SatBałtyk - a Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: assumptions, scope and operating range, Oceanologia, 53 (4), http://dx.doi.org/10.5697/oc.53-4.897
  • 42.Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011b, SatBałtyk - a Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: practical applicability and preliminary results, Oceanologia, 53 (4), http://dx.doi.org/10.5697/oc.53-4.925
  • 43.Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.
  • 44.Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171-245.
  • 45.Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002, Dependence of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439-459.
  • 46.Woźniak B., Dera J., Koblentz-Mishke O. I., 1992, Bio-optical relationships for estimating primary production in the ocean, Oceanologia, 33, 5-38.
  • 47.Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007, Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527-542.
  • 48.Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.