PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of a non-uniform land surface on the radiation environment over an Arctic fjord - a study with a 3D radiative transfer model for stratus clouds over the Hornsund fjord, Spitsbergen

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper estimates the influence of land topography and cover on 3D radiative effects under overcast skies in the Arctic coastal environment, in particular in the Hornsund fjord region, Spitsbergen. The authors focus on the impact of a non-uniform surface on: (1) the spatial distribution of solar fluxes reaching the fjord surface, (2) spectral shortwave cloud radiative forcing at the fjord surface, (3) the solar flux anomaly at the domain surface resulting from the assumption of a uniform surface, i.e. the error due to plane parallel assumptions in climate models, and (4) remote sensing of cloud optical thickness over the fjord. Their dependence on spectral channel, cloud optical thickness, cloud type, cloud base height, surface albedo and solar zenith angle is discussed. The analysis is based on Monte Carlo simulations of solar radiation transfer over a heterogeneous surface for selected channels of the MODIS radiometer. The simulations showed a considerable impact of the land surrounding the fjord on the solar radiation over the fjord. The biggest differences between atmospheric transmittances over the fjord surface and over the ocean were found for a cloud optical thickness τ = 12, low solar zenith angle υ, high cloud base and snow-covered land. For τ= 12, υ = 53°, cloud base height 1.8 km and wavelength λ= 469 nm, the enhancement in irradiance transmittance over the fjord was 0.19 for the inner fjords and 0.10 for the whole fjord (λ = 469 nm). The land surrounding the Hornsund fjord also had a considerable impact on the spectral cloud radiative forcing on the fjord surface and the solar flux anomaly at the domain surface due to the uniform surface assumption. For the mouth and central part of the fjord the error due to the use of channel 2 of the MODIS radiometer (λ = 858 nm) for cloud optical thickness retrieval was < 1 in the case of low-level clouds (cloud base height 1 km, nadir radiance, υ = 53°, cloud optical thickness retrieved solely from MODIS channel 2). However, near the shoreline (up to 2 km from it), especially over the inner fjords, the cloud optical thickness was then overestimated by > 3 for τ = 5 and by > 5 for τ = 20.
Czasopismo
Rocznik
Strony
509--544
Opis fizyczny
Bibliogr. 56 poz., mapki, wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland, ania@iopan.gda.pl
Bibliografia
  • 1.Arnold N. S., Rees W.G., Hodson A. J., Kohler J., 2006, Topographic controls on the surface energy balance of a high Arctic glacier, J. Geophys. Res., 111, F02011, http://dx.doi.org/10.1029/2005JF000426
  • 2.Arnold G.T., Tsay S.-C., King M.D., Li J.Y., Soulen P. F., 2002, Airborne spectral measurements of surface-atmosphere anisotropy for arctic sea ice and tundra, Int. J. Remote Sens., 23 (18), 3763-3781, http://dx.doi.org/10.1080/01431160110117373
  • 3.Baran A. J., Shcherbakov V.N., Baker B.A., Gayet J.F., Lawson R.P., 2005, On the scattering phase-function of non-symmetric ice-crystals, Q. J. R. Meteorol. Soc., 131 (611), 2609-2616, http://dx.doi.org/10.1256/qj.04.137
  • 4.Benner T.C., Curry J.A., Pinto J. O., 2001, Radiative transfer in the summertime Arctic, J. Geophys. Res., 106 (D14), 15173-15183, http://dx.doi.org/10.1029/2000JD900422
  • 5.Berk A., Anderson G.P., Acharya P.K., Hoke M. L., Chetwynd J. H., Bernstein L. S., Shettle E.P., Matthew M.W., Alder-Golden S.M., 2003, MODTRAN4. Version 3. Revision 1. Users manual, Air Force Res. Lab., Hanscom, AFB, MA., 91 pp.
  • 6.Błaszczyk M., Jania J., Hagen J.O., 2009, Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.
  • 7.Chen Y., Hall A., Liou K.N., 2006, Application of three-dimensional solar radiative transfer to mountains, J. Geophys. Res., 111 (D21111), http://dx.doi.org/10.1029/2006JD007163
  • 8.D'Almeida G.A., Koepke P., Shettle E.P., 1991, Atmospheric aerosols. Global climatology and radiative characteristics, A. DEEPAK Publ., Hampton, 561 pp.
  • 9.Degünther M., Meerkötter R., 2000, Influence of inhomogeneous surface albedo on UV irradiance: effect of a stratus cloud, J. Geophys. Res., 105 (D18), 22755-22761, http://dx.doi.org/10.1029/2000JD900344
  • 10.Dong X., Mace G.G., 2003, Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska, J. Clim., 16 (3), 445-461, http://dx.doi.org/10.1175/1520-0442(2003)016<0445:ASCPAR>2.0.CO;2
  • 11.Dunlap E., De Tracey B.M., Tang C.C. L., 2007, Short-wave radiation and sea ice in Baffin Bay, Atmos.-Ocean, 45 (4), 195-210, http://dx.doi.org/10.3137/ao.450402
  • 12.Fu Q., 2007, A new parameterization of an asymmetry factor of cirrus clouds for climate models, J. Atmos. Sci., 64 (11), 4140-4150, http://dx.doi.org/10.1175/2007JAS2289.1
  • 13.Grenfell T.C., Perovich D.K., 1984, Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea, J. Geophys. Res., 89 (C3), 3573-3580, http://dx.doi.org/10.1029/JC089iC03p03573
  • 14.Grenfell T.C., Warren S.G., Mullen P.C., 1994, Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible and near-infrared wavelengths, J. Geophys. Res., 99 (D9), 18669-18684, http://dx.doi.org/10.1029/94JD01484
  • 15.Henyey L.G., Greenstein J. L., 1941, Diffuse radiation in the galaxy, Astrophys. J., 93, 70-83, http://dx.doi.org/10.1086/144246
  • 16.Hofierka J., 1997, Direct solar radiation modelling within an open GIS environment, Proc. JEC-GI'97 conf., Vienna, Austria, IOS Press, Amsterdam, 575-584.
  • 17.Hu Y.X., Stamnes K., 1993, An accurate parametrization of the radiative properties of water clouds suitable for use in climate models, J. Climate, 6 (4), 728-742, http://dx.doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2
  • 18.Iwabuchi H., 2006, Efficient Monte Carlo methods for radiative transfer modeling, J. Atmos. Sci., 63 (9), 2324-2339, http://dx.doi.org/10.1175/JAS3755.1
  • 19.King M. D., Platnick S., Yang P., Arnold G.T., Gray M. A., Riedi J. C., Ackerman S.A., Liou K.-N., 2004, Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: application of airborne multispectral MAS data, J. Atmos. Ocean. Technol., 21 (6), 857-875, http://dx.doi.org/10.1175/1520-0426(2004)021<0857:RSOLWA>2.0.CO;2
  • 20.King M.D., Tsay S.-C., Platnick S.E., Wang M., Liou K.-N., 1997, Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase, MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-05 MOD06 - Cloud product (23 December 1997, version 5), 79 pp.
  • 21.Kolondra L., 2002, Problemy fotogrametrycznego pozyskiwania danych w badaniach glacjologicznych (studium metodyczne na przykładzie Spitsbergenu), rozprawa doktorska, Biblioteka Wydziału Nauk o Ziemi Uniwersytetu Śląskiego, 166 pp. + 3 mapy.
  • 22.Kylling A., Dahlback A., Mayer B., 2000, The effect of clouds and surface albedo on UV irradiances at a high latitude site, Geophys. Res. Lett., 27 (9), 1411-1414, http://dx.doi.org/10.1029/1999GL011015
  • 23.Kylling A., Mayer B., 2001, Ultraviolet radiation in partly snow covered terrain: observations and three-dimensional simulations, Geophys. Res. Lett., 28 (19), 3665-3668, http://dx.doi.org/10.1029/2001GL013034
  • 24.Liou K.N., Lee W.-L., Hall A., 2007, Radiative transfer in mountains: application to the Tibetan Plateau, Geophys. Res. Lett., 34, L23809, http://dx.doi.org/10.1029/2007GL031762
  • 25.Lubin D., Ricchiazzi P., Payton A., Gautier C., 2002, Significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline, J. Geophys. Res., 107 (D19), 4387, http://dx.doi.org/10.1029/2001JD002030
  • 26.Marchuk G., Mikhailov G., Nazaraliev M., Darbinjan R., Kargin B., Elepov B., 1980, The Monte Carlo methods in atmospheric optics, Springer-Verlag, New York, 208 pp.
  • 27.Marsaglia G., 1999, Random numbers for C: The END?, Message-ID36A5FC62.17C9CC33@stat.fsu.edu in newsgroups sci.math and sci.stat.math, 20 Jan 1999, http://groups.google.com/group/sci.crypt/browse thread/thread/ca8682a4658a124d/
  • 28.Marsaglia G., Zaman A., 1993, The KISS generator, Technical report, Florida State Univ., Tallahassee, FL.
  • 29.Marshak A., Davis A. B. (eds.), 2005, 3D radiative transfer in cloudy atmospheres, Springer-Verlag, Berlin-Heidelberg-New York, 686 pp., http://dx.doi.org/10.1007/3-540-28519-9
  • 30.Marshak A., Davis A., Wiscombe W., Titov G., 1995, The verisimilitude of the independent pixel approximation used in cloud remote sensing, Remote Sens. Environ., 52 (1), 71-78, http://dx.doi.org/10.1016/0034-4257(95)00016-T
  • 31.Mayer B., Degünther M., 2000, Comment on 'Measurements of erythemal irradiance near Davis Station, Antarctica: effect of inhomogeneous surface albedo', Geophys. Res. Lett., 27 (21), 3489-3490, http://dx.doi.org/10.1029/1999GL011171
  • 32.Mayer B., Hoch S.W., Whiteman C.D., 2010, Validating the MYSTIC threedimensional radiative transfer model with observations from the complex topography of Arizona's meteor crater, Atmos. Chem. Phys., 10 (18), 8685-8696, http://dx.doi.org/10.5194/acp-10-8685-2010
  • 33.McComiskey A., Ricchiazzi P., Gautier C., Lubin D., 2006, Assessment of a three dimensional model for atmospheric radiative transfer over heterogeneous land cover, Geophys. Res. Lett., 33, L10813, http://dx.doi.org/10.1029/2005GL025356
  • 34.Ørbćk J.B., Hisdal V., Svaasand L.E., 1999, Radiation climate variability in Svalbard: surface and satellite observations, Polar Res., 18 (2), 127-134, http://dx.doi.org/10.1111/j.1751-8369.1999.tb00284.x
  • 35.Perovich D. K., Richter-Menge J.A., Jones K.F., Light B., 2008, Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007, Geophys. Res. Lett., 35, L11501, http://dx.doi.org/10.1029/2008GL034007
  • 36.Pirazzini R., R¨ais¨anen P., 2008, A method to account for surface albedo heterogeneity in single-column radiative transfer calculations under overcast conditions, J. Geophys. Res., 113, D20108, http://dx.doi.org/10.1029/2008JD009815
  • 37.Platnick S., Li J.Y., King M.D., Gerber H., Hobbs P.V., 2001, A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces, J. Geophys. Res., 106 (D14), 15185-15199, http://dx.doi.org/10.1029/2000JD900441
  • 38.Podgorny I., Lubin D., 1998, Biologically active insolation over Antarctic waters: effect of a highly reflecting coastline, J. Geophys. Res., 103 (C2), 2919-2928, http://dx.doi.org/10.1029/97JC02763
  • 39.Ramanathan V., Cess R.D., Harrison E.F., Minnis P., Barkstrom B.R., Ahmad E., Hartmann D., 1989, Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment, Science, 243 (4887), 57-63, http://dx.doi.org/10.1126/science.243.4887.57
  • 40.Ricchiazzi P., Gautier C., 1998, Investigation of the effect of surface heterogeneity and topography on the radiation environment of Palmer Station, Antarctica, with a hybrid 3-D radiative transfer model, J. Geophys. Res., 103 (D6), 6161-6176, http://dx.doi.org/10.1029/97JD03629
  • 41.Ricchiazzi P., Payton A., Gautier C., 2002, A test of three-dimensional radiative transfer simulation using the radiance signatures and contrasts at a high latitude coastal site, J. Geophys. Res.-Atmos., 107 (D22), 4650, http://dx.doi.org/10.1029/2001JD001166
  • 42.Rozwadowska A., 2008, Influence of the land topography and cover on the spatial distribution of solar radiation balance components at the land and sea surface in the Hornsund region, Spitsbergen - a pilot model study, IO PAS internal report, Statutory research task I.1.1, 2008, 23 pp.
  • 43.Rozwadowska A., Cahalan R., 2002, Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice, J. Geophys. Res., 107 (D19), 4387, http://dx.doi.org/10.1029/2002JD002092
  • 44.Shupe M.D., Uttal T., Matrosov S.Y., 2005, Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA, J. Appl. Meteorol., 44 (10), 1544-1562, http://dx.doi.org/10.1175/JAM2297.1
  • 45.Shupe M.D., Uttal T., Matrosov S.Y., Frisch A. S., 2001, Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment, J.Geophys. Res., 106 (D14), 15015-15028, http://dx.doi.org/10.1029/2000JD900476
  • 46.Smolskaia I., Nunez M., Michael K., 1999, Measurements of erythemal irradiance near Davis Station, Antarctica: effect of inhomogeneous surface albedo, Geophys. Res. Lett., 26 (10), 1381-1384, http://dx.doi.org/10.1029/1999GL900190
  • 47.Spada F., Krol M.C., Stammes P., 2006, McSCIA: application of the Equivalence Theorem in a Monte Carlo radiative transfer model for spherical shell atmospheres, Atmos. Chem. Phys., 6 (12), 4823-4842, http://dx.doi.org/10.5194/acp-6-4823-2006
  • 48.Stamnes K., Tsay S.-C., Laszlo I., 2000, DISORT, a general-purpose Fortran program for discrete-ordinate method radiative transfer in scattering and emitting layered media: documentation and methodology, ver. 1.1.
  • 49.Stamnes K., Tsay S.-C., Wiscombe W., Jayaweera K., 1988, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27 (12), 2502-2509, http://dx.doi.org/10.1364/AO.27.002502
  • 50.Szymanowski M., Kryza M., Migała K., Sobolewski P., Kolondra L., 2008, Preliminary results of GIS-based solar radiation model for Hornsund area, SW Spitsbergen. The dynamics and mass budget of Arctic glaciers, Extended abstracts, Workshop and GLACIODYN (IPY) meeting, 29-31 January 2008, Obergurgl (Austria), IASC Working group on Arctic Glaciology, Inst. Marine Atmos. Res., Utrecht Univ., Utrecht, 126-128.
  • 51.Šúri M., Hofierka J., 2004, A new GIS-based solar radiation. Model and its application to photovoltaic assessments, Transactions GIS, 8 (2), 175-190, http://dx.doi.org/10.1111/j.1467-9671.2004.00174.x
  • 52.Thomas G., Stamnes K., 2002, Radiative transfer in the atmosphere and ocean, Cambridge Univ. Press, Cambridge, 517 pp.
  • 53.Tsay S.-C., Jayaweera K., 1984, Physical characteristics of Arctic stratus clouds, J. Clim. Appl. Meteorol., 23 (4), 584-596, http://dx.doi.org/10.1175/1520-0450(1984)023<0584:PCOASC>2.0.CO;2
  • 54.Werenskioldbreen and surrounding areas, Spitsbergen, Svalbard, Norway; orthophotomap 1:25 000, 2002, Uniwersytet Śląski, Wydział Biologii i Nauk o Ziemi, Sosnowiec and Norsk Polarinstitutt, Tromso, Sosnowiec.
  • 55.Werner I., Ikävalko J., Schünemann H., 2007, Sea-ice algae in Arctic pack ice during late winter, Polar Biol., 30 (11), 1493-1504, http://dx.doi.org/10.1007/s00300-007-0310-2
  • 56.Winther J.-G., Gerland S., Orbak J. B., Ivanov B., Blanco A., Boike J., 1999, Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: some implications for optical satellite remote sensing studies, Hydrol. Process., 13 (12-13), 2033-2049, http://dx.doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<2033::AID-HYP892>3.0.CO;2-M
  • 57.Zhang Y., Li Z., Macke A., 2002, Retrieval of surface solar radiation budget under ice cloud sky: uncertainty analysis and parameterization, J. Atmos. Sci., 59 (20), 2951-2965, http://dx.doi.org/10.1175/1520-0469(2002)059<2951:ROSSRB>2.0.CO;2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.