PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perception of Mixture of Musical Instruments with Spectral Overlap Removed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The issue of auditory segregation of simultaneous sound sources has been addressed in speech research but was given less attention in musical acoustics. In perception of concurrent speech, or speech with noise, the operation of time-frequency masking was often used as a research tool. In this work, an ex- tension of time-frequency masking, leading to the removal of spectro-temporal overlap between sound sources, was applied to musical instruments playing together. The perception of the original mixture was compared with the perception of the same mixture with all spectral overlap electronically removed. Ex- periments differed in the method of listening (headphones or a loudspeaker), sets of instruments mixed, and populations of participants. The main findings were: (i) in one of the experimental conditions the re- moval of spectro-temporal overlap was imperceptible, (ii) perception of the effect increased when removal of spectro-temporal overlap was performed in larger time-frequency regions rather than in small ones, (iii) perception of the effect decreased in loudspeaker listening. The results support both the multiple looks hypothesis and the "glimpsing" hypothesis known from speech perception.
Rocznik
Strony
355--363
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology al. A. Mickiewicza 30, 30-059 Kraków, Poland, kleczkow@agh.edu.pl
Bibliografia
  • 1. Barker J., Cooke M. 2007, Modelling speaker intelligibility in noise, Speech Communication, 49, 402-417.
  • 2. Bregman A.S. (1990), Auditory Scene Analysis, MIT Press, Cambridge.
  • 3. Brungart D.S., Chang P.S., Simpson B.D., Wang D.L. (2009), Multitalker speech perception with ideal time-frequency segregation: Effects of voice characteristics and number of talkers, J. Acoust. Soc. Am., 125, 4006-4022.
  • 4. Cooke M.P. (2006), A glimpsing model of speech perception in noise, J.Acoust. Soc. Am., 119, 1562-1573.
  • 5. Fastl H., Zwicker E. (2007), Psychoacoustics - facts and models, Springer - Verlag, Berlin Heidelberg.
  • 6. Gescheider G.A. (1997), Psychophysics: The Fundamentals, Lawrence Erlbaum Associates.
  • 7. Howard-Jones P.A., Rosen S. (1993a), The perception of speech in fluctuating noise, Acustica, 78, 258-272.
  • 8. Howard-Jones, P.A., Rosen S. (1993b), Uncomodulated glimpsing in 'checkerboard' noise, J. Acoust. Soc. Am., 93, 2915-2922.
  • 9. ITU (International Telecommunication Union) (1997), Methods for the subjective assessment of small impairments in audio systems including multichannel sound systems, Recommendation BS.1116-1.
  • 10. Kelly M.C., Tew A.I. (2002), The continuity illusion in virtual auditory space, Proc. 112th AES Conv. Preprint 5548.
  • 11. Kelly M.C., Tew A.I. (2003), The significance of spectral overlap in multiple-source localization, Proc. 114th AES Conv. Preprint 5725.
  • 12. Kingdom F.A.A., Prins N. (2010), Psychophysics: A Practical Introduction, Academic Press, London.
  • 13. Kleczkowski P. (2002), Acoustic Signal Expansion in Multiple Trigonometric Bases, Acta Acustica united with Acustica, 88, 526-535.
  • 14. Kleczkowski P. (2005), Selective Mixing of Sounds, 119th AES Conv., New York, Preprint 6552, October 2005.
  • 15. Kleczkowski P. (2008), Selective mixing of a symphony orchestra recording, Archives of Acoustics, 31, 4 (Supplement), 91-99.
  • 16. Kleczkowski P., Plewa M., Pluta M. (2010), Masking a frequency band in a musical fragment played by a single instrument, Acta Physica Polonica A, 119, 991-995.
  • 17. Kleczkowski P., Pluta M. (2012), Understanding concurrent speech is not impaired by removal of spectrotemporal overlap, Acoustics 2012 Conference, Hong Kong.
  • 18. Lu Y., Cooke M. (2008), Speech production modifications produced by competing talkers, babble, and stationary noise, J. Acoust. Soc. Am., 124, 3261-3275.
  • 19. Malvar H.S. (1992), Signal Processing with Lapped Transforms, Artech House, London.
  • 20. Moore B.C.J. (2003), An Introduction to the Psychology of Hearing, Academic Press, London.
  • 21. Moore B.C.J., Glasberg B.R., Plack C.J., Biswas A.K. (1988), The shape of the ear's temporal window, J. Acoust. Soc. Am., 83, 1102-1117.
  • 22. Viemeister N.F., Wakefield G.H. (1991), Temporal integration and multiple looks, J. Acoust. Soc., 90, 858-865.
  • 23. Wang D.L., Brown G.J. (2006), Fundamentals of computational auditory scene analysis [in:] Wang D.L., Brown G.J. [Eds.], Computational auditory scene analysis: Principles, Algorithms, and Applications, IEEE Press/Wiley-Interscience., Hoboken NJ, pp. 1-44.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.