PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Beam Tracing with Refraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the beam tracing with refraction method, developed to examine the possibil- ity of creating the beam tracing simulation of sound propagation in environments with piecewise non- homogenous media. The beam tracing with refraction method (BTR) is developed as an adaptive beam tracing method that simulates not only the reflection but also the refraction of sound. The scattering and the diffraction of sound are not simulated. The BTR employs 2D and 3D topology in order to efficiently simulate scenes containing non-convex media. After the beam tracing is done all beams are stored in a beam tree and kept in the computer memory. The level of sound intensity at the beginning of each beam is also memorized. This beam data structure enables fast recalculation of results for stationary source and geometry. The BTR was compared with two commercial ray tracing simulations, to check the speed of BTR algorithms. This comparison demonstrated that the BTR has a performance similar to state-of- the-art room-acoustics simulations. To check the ability to simulate refraction, the BTR was compared with a commercial Finite Elements Method (FEM) simulation. In this comparison the BTR simulated the focusing of the ultrasound with an acoustic lens, with good accuracy and excellent performance.
Słowa kluczowe
Rocznik
Strony
301--316
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
autor
  • Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split Ruąera Boškovića 32, Split HR-21000, Croatia, sikora@fesb.hr
Bibliografia
  • 1. Alpkocak A., Sis M.K. (2010), Computing impulse response of room acoustics using the ray-tracing method in time domain, Archives of Acoustics, 35, 4, 505-519.
  • 2. Bork I. (2005), Report on the 3rd Round Robin on Room Acoustical Computer Simulation - Part II: Calculations, Acta Acustica united with Acustica, 91, 753-763.
  • 3. Botteldooren D. (1994), Acoustical ?nite-difference time-domain simulations in a quasi-Cartesian grid, Journal of Acoustical Society of America, 95, 2313-2319.
  • 4. James A., Dalenback B.I., Naqvi A. (2008), Computer Modelling With CATT Acoustics - Theory and Practise of Diffuse Reflection and Array Modeling, Proceedings of 24th Reproduced Sound Conference, 20-21.11, Brighton, UK.
  • 5. Drumm I. (2000), The adaptive beam tracing algorithm, Journal of Acoustical Society of America, 107, 3, 1405-1412.
  • 6. Farina A. (1994), Ramsete un nuovo software per la previsione del campo sonoro in teatri, ambienti industriali ed ambiente esterno, Atti del XXII Congresso Nazionale AIA, 13-15 April, Lecce.
  • 7. Farina A. (2000), Validation of the pyramid tracing algorithm for sound propagation outdoors: comparison with experimental measurements and with the ISO/DIS 9613 standards, Advances in Engineering Software, 31, 4, 241-250.
  • 8. Feistel S., Ahnert W., Miron A., Schmitz O. (2007), Improved methods for calculating room impulse response with EASE 4.2 AURA, Proceedings of 19th International congress on Acoustics, 2-7 September, Madrid.
  • 9. Fink K. (1994), Computer Simulation of Pressure Fields Generated by Acoustic Lens Beamformers, M.Sc. Thesis, University of Washington.
  • 10. Funkhouser T., Carlbom I., Elko G., Pingali G., Sondhi M., West J.A. (1998), Beam Tracing Approach to Acoustic Modeling for Interactive Virtual Environments, Proceedings SIGGRAPH 98, pp. 21-32, Orlando.
  • 11. Goldberg D. (1991), What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, 21, 1, 5-48.
  • 12. Heckbert P.S., Hanrahan P. (1984), Beam Tracing Polygonal Objects, Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pp. 119-127, New York.
  • 13. Kleiner M., Dalenback B.I., Svensson P. (1993), Auralization - An Overview, Journal of Audio Engineering Society, 41, 11, 861-875.
  • 14. Laine S., Siltanen S., Lokki T., Savioja L. (2009), Accelerated beam tracing algorithm, Applied Acoustics (Elsevier), 70, 1, 172-181.
  • 15. Lewers T. (1993), A combined beam tracing and radiant exchange computer model of room acoustics, Applied Acoustics (Elsevier), 38, 2, 161-178.
  • 16. Maercke D., Maercke D., Martin J. (1993), The prediction of echograms and impulse responses within the Epidaure software, Applied Acoustics (Elsevier), 38, 2, 93-114.
  • 17. Noisternig M., Katz B.F.G, Siltanen S., Savioja L. (2008), Framework for Real-Time Auralization in Architectural Acoustics, Acta Acustica united with Acustica, 94, 1000-1015.
  • 18. Picaut J., Polack J.-D., Simon L. (1997), A Mathematical Model of Diffuse Sound Field Based on a Diffusion Equation, Acta Acustica united with Acustica, 83, 614-621.
  • 19. Pierce A.D. (1981), Acoustics - An Introduction to its Physical Principles and Applications, McGraw-Hill.
  • 20. Shah M., Pattanaik S. (2007), Caustic Mapping: An Image-space Technique for Real-time Caustics, IEEE Transactions on Visualization and Computer Graphics, 13, 272-280.
  • 21. Sikora M., Mateljan I., Bogunović N. (2010), The effect of refraction as a non-linear transformation on beam tracing simulation of sound propagation, Proceedings of 1st EAA EUROREGIO Congress on Sound and Vibration - Acta Acustica united with Acustica, 96, Supp. 1, 62.
  • 22. Siltanen S., Lokki T., Kiminki S., Savioja L. (2007), The room acoustic rendering equation, Journal of Acoustical Society of America, 95, 2313-2319, 122, 3, 1624-1635.
  • 23. Siltanen S., Lokki T., Savioja L. (2009), Frequency Domain Acoustic Radiance Transfer for Real-Time Auralization, Acta Acustica united with Acustica, 95, 106-117.
  • 24. Sutherland I.E., Hodgman G.W. (1974), Reentrant polygon clipping, Communications of the ACM, 17, 1, pp. 32-42.
  • 25. Stephenson U. (1996), Quantized Pyramidal Beam Tracing - a new algorithm for room acoustics and noise immission prognosis, Acta Acustica united with Acustica, 82, 517-525.
  • 26. Tsingos N., Funkhouser T. (2001), Modeling Acoustics in Virtual Environments Using 1the Uniform Theory of Diffraction, Proceedings of ACM SIGGRAPH 2001, pp. 545-552, Los Angeles.
  • 27. Vorlander M. (2008), Auralization, Springer.
  • 28. Walsh J.P., Dadoun N., Kirkpatrick D.G. (1985), The geometry of beam tracing, Proceedings of the first annual symposium on Computational geometry, pp. 55-61, Toronto.
  • 29. Wojcik G.L., Vaughan D.K., Murray V., Mould J. Jr. (1994), Time-domain Modeling of Composite Arrays for Underground Imaging, Proceedings of the IEEE Ultrasonics Symposium, pp. 1027-1032, Cannes.
  • 30. Wojcik G.L., Vaughan D.K., Abboud N., Mould J. Jr. (1998), Finite Element Modeling for Ultrasonic Transducers, Proceedings of Ultrasonic transducer engineering Conference, pp. 19-42, San Diego
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.