PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Acoustic Emission Method to Determine Critical Stress in Fibre Reinforced Mortar Beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this investigation was to test the effectiveness of the Acoustic Emission (AE) mea- surements in determining the critical stresses during four-point bending of mortar beams. Within the measuring procedure the parameter σcr/σ300 was calculated and analysed. Additionally, the influence of cement replacement by high calcium fly ash (HCFA) on the process of crack healing was discussed. Mortar beams with different content of HCFA and reinforced by steel microfibres were prepared for tests. After curing in standard conditions the beams were subjected to four-point bending test in order to introduce the pre-cracking. Thereafter the beams were cured in the lime water and loaded after 56 and 112 days in the same way as for the first time. Additionally the microstructure of mortars was studied in a stereo optical microscope as well in an electron scanning microscope including the Energy Dispersive X-ray analysis (EDX). The results of microstructural characterization of mortar containing HCFA from lignite combustion are presented. The applied load level slightly exceeded the critical stress, producing intense crack growth processes however did not significant affected the load capacity of the beams. During the consecutive loading the decreasing tendency of σcr/σ300 ratio was noted. The obtained results confirm that the latter parameter can be applied as a measure of the composite degradation level for the elements carrying the repeated loads of amplitude close to the critical stress of the structure and also that the cement replacement with HCFA influences the process of crack healing.
Rocznik
Strony
261--268
Opis fizyczny
Bibliogr. 26 poz., fot., tab., wykr.
Twórcy
autor
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland, zranach@ippt.pan.pl
Bibliografia
  • 1. Abrams D.A. (1917), Effects of rate of application of load on the compressive strength of concrete, Amer. Soc. For Testing of Materials, Proc. 17, part II, 364-377.
  • 2. Arrington M., Evans B.M. (1977), Acoustic emission testing of high alumina cement concrete, NDT Int., 10, 2, 81-87.
  • 3. Golewski G., Sadowski T. (2007), Analysis of brittle damages in concrete composites [in Polish], Proc. Of Cracow University of Technology, Civil Engineering, 1-B, 4, 55-62.
  • 4. Granger S., Pijaudier G., Loukili A., Marlot D., Lenain J.C. (2009), Monitoring of cracking and healing in an ultra high performance cementitious material using the time reversal technique, Cem. & Concr. Res., 39, 296-302.
  • 5. Gray R.J. (1984), Autogeneous healing of fibre/matrix interfacial bond in fibre-reinforced mortar, Cem. & Concr. Res., 14, 315-317.
  • 6. Hannant D.J., Edgington J. (1975), Durability of steel fibre concrete, [in:] Proc. RILEM Symp. "Fibre reinforced cement and concrete", Lancaster; Construction Press, 159-169.
  • 7. Hannant D.J., Keer J.G. (1983), Autogeneous healing of thin cement based sheets, Cem. & Concr. Res., 13, 533-538.
  • 8. Hoła J. (1999), Acoustic Emission investigation of failure of high-strength concrete, Archives of Acoustics, 24, 2, 233-244.
  • 9. Hosoda A., Komatsu S., Ahn T., Kishi T., Ikeno S., Kobayashi K. (2009), Self healing properties with various crack widths under continuous water leakage, in: Concr. Repair, Rehab. and Retrofit., II, Alexander et al. [Eds.], Taylor and Francis, 221-227.
  • 10. Jacobsen S., Sellevold E.J. (1996), Self healing of high strength concrete after deterioration by freeze/thaw, Cem. & Concr. Res., 26, 1, 55-62.
  • 11. Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A., Nowowiejski G. (2011), Tightness of the concretes with high calcium fly ash admixture in relation to diffusion of aggressive agents [in Polish: Drogi i Mosty], Journal of Polish Institute of Roads and Bridges, 3, 39-61.
  • 12. Jóźwiak-Niedźwiedzka D., Brandt A.M., Ranachowski Z. (2012), Self-healing of cracks in fibre reinforced mortar beams made with high calcium fly ash, Cement, Wapno, Beton (www.cementwapnobeton.pl), 1, 38-49.
  • 13. Kasperkiewicz J., Stroeven P. (1991), Observations on crack healing in concrete, [in:] Proc. Int. Symp. "Brittle Matrix Composites 3" Warszawa, Appl. Sc. Publ., 164-173.
  • 14. Marks M., Jóźwiak-Niedźwiedzka D., Glinicki M.A. (2012), Automatic categorization of chloride migration into concrete modified with CFBC ash, Computers and Concrete, 9, 5, 375-387.
  • 15. Mor A., Monteiro P.J.M., Hester W.T. (1989), Observations of healing of cracks in high-strength lightweight concrete, Cem. Concr. and Aggr., 11, 2, 121-125.
  • 16. Ohtsu M. (1996), The history and development of acoustic emission in concrete engineering, Magazine of Concrete Res., 48, 321-330.
  • 17. Ouyang C.S., Landis E., Shah S.P. (1991), Damage assesment in concrete using quantitative acoustic emission, J. Eng. Mech., 117, 11, 2681-2698.
  • 18. Qjan S.Z., Zhou J., Schlangen E. (2010), Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites, Cem. & Concr. Comp., 32, 686-693.
  • 19. Ranachowski P., Rejmund F., Ranachowski Z., Pawełek A., Piątkowski A. (2009), Comparison of Acoustic Emission and Structure Degradation in Compressed Porcelain and Corrundum Materials, Archives of Acoustics, 34, 4, 566-676.
  • 20. Reinhardt H.W., Jooss M. (2003), Permeability and self-healing of cracked concrete as a function of temperature and crack width, Cem. & Concr. Res., 33, 981-985.
  • 21. Ruesch H. (1959), Physical problems in the testing of concrete, Zement, Kalk, Gips, 12, 1, 1-9.
  • 22. Sahmaran M., Keskin S.B., Ozerkan G., Yaman I.O. (2008), Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash, Cem. & Concr. Comp., 30, 872-879.
  • 23. Schiessl P., Reuter C. (1992), Massgebende Einflussgrössen auf die Wasserdurchlässigkeit von gerissenen Stahlbetonbauteilen, Ann. Report, Institüt für Bauforschung, Aachen, 223-228.
  • 24. Tsimas S., Moutsatsou-Tsima A. (2005), Highcalcium fly ash as the fourth constituent in concrete: problems, solutions, and perspectives, Cem. Concr. Comp., 27, 231-237.
  • 25. Wenhui Zhong, Wu Yao (2008), Influence of damage degree on self-healing of concrete, Constr. & Build. Materials, 22, 1137-1142.
  • 26. Yuyama S., Ohtsu M. (2000), Acoustic Emission evaluation in concrete [in:] Kishi T., Ohtsu M., Yuyama S. [Eds.], Acoustic Emission-Beyond the Millennium, Elsevier, 187-213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0023-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.