PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic Heating Produced in the Boundary Layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Instantaneous acoustic heating of a viscous fluid flow in a boundary layer is the subject of investigation. The governing equation of acoustic heating is derived by means of a special linear combination of conser- vation equations in the differential form, which reduces all acoustic terms in the linear part of the final equation but preserves terms belonging to the thermal mode. The procedure of decomposition is valid in a weakly nonlinear flow, it yields the nonlinear terms responsible for the modes interaction. Nonlinear acoustic terms form a source of acoustic heating in the case of the dominative sound. This acoustic source reflects the thermoviscous and dispersive properties of a fluid flow. The method of deriving the governing equations does not need averaging over the sound period, and the final governing dynamic equation of the thermal mode is instantaneous. Some examples of acoustic heating are illustrated and discussed, and conclusions about efficiency of heating caused by different waveforms of sound are made.
Słowa kluczowe
Rocznik
Strony
205--211
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdańsk University of Technology Narutowicza 11/12, 80-233 Gdańsk, Poland, anpe@mif.pg.gda.pl
Bibliografia
  • 1. Alekseev V.N., Rybak S.A. (2002), Equations of State for Viscoelastic Biological Media, Acoustical Physics, 48, 5, 511-517.
  • 2. Blackstock D.T. (1985), Generilized Burgers equation for plane waves, J. Acoust. Soc. Am., 77, 6, 2050-2053.
  • 3. Chu B.-T., Kovasznay L.S.G. (1958), Nonlinear interactions in a viscous heat-conducting compressible gas, J. Fluid. Mech. 3, 494-514.
  • 4. Collyer A.A. (1974), Time dependent fluids, Phys. Educ., 9, 38, 38-44.
  • 5. Coppens A.B. (1971), Theoretical study of finiteamplitude travelling waves in rigid-walled ducts: behaviour for strengths predicting shock formation, J. Acoust. Soc. Am., 49, 306-318.
  • 6. Gudra T. (2008), Ultrasounds in gas media: generation, transmission, applications (review paper), Archives of Acoustics, 33, 4, 581-592.
  • 7. Hamilton M., Il'inskii Yu.A., Zabolotskaya E.A. (1998), Dispersion, [in:] Nonlinear Acoustics, Hamilton M., Blackstock D. [Eds.], pp. 151-175, Academic Press.
  • 8. Hartman C.L., Child S.Z., Penney D.P., Carstensen E.L. (1992), Ultrasonic heating of lung tissue, J. Acoust. Soc. Am., 91, 1, 513-516.
  • 9. Landau L.D., Lifshitz E.M. (1987), Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 4th ed., Nauka, Moscow.
  • 10. Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics, Part I, Acustica, 82, 579-606.
  • 11. Makarov S., Ochmann M. (1997), Nonlinear and thermoviscous phenomena in acoustics, Part II, Acustica, 83, 197-222.
  • 12. Makarov S. (1994), Self-reflection in nonlinear acoustics. Theoretical ground and possible applications, Acustica, 80, 1-13.
  • 13. Mewis J. (1979), Thixotropy - a general review, J. Non-Newtonian Fluid Mech., 6, 1-20.
  • 14. Perelomova A. (2003), Acoustic radiation force and streaming caused by non-periodic acoustic source, Acta Acustica united with Acustica, 89, 754-763.
  • 15. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357, 42-47.
  • 16. Perelomova A. (2008), Acoustic heating in a weakly dispersive fluid flow, Acta Acustica, 94, 3, 382-387.
  • 17. Perelomova A., Pelc-Garska W. (2010), Efficiency of acoustic heating produced in thermoviscous flow of a fluid with relaxation, Central European Journal of Physics, 8, 6, 855-863.
  • 18. Riemann B. (1953), The collected works of Bernard Riemann, Dover, New York.
  • 19. Rudenko O.V. (2007), Nonlinear waves: some biomedical applications, Physics-Uspekhi 50, 4, 359-367.
  • 20. Rudenko O.V., Soluyan S.I. (1977), Theoretical foundations of nonlinear acoustics, Plenum, New York.
  • 21. Temkin S. (1990), Attenuation and dispersion of sound in bubbly fluids via the Kramers-Kronig relations, J. Fluid. Mech. Am., 211, 61-72.
  • 22. Wójcik J., Kujawska T., Nowicki A. (2008), Pulsed nonlinear acoustic fields from clinically relevant sources: numerical calculations and experiments results, Archives of Acoustics, 33, 4, 565-571
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0022-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.