PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Evaluation of the Vibration Reduction Index for Structural Joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper addresses the analysis of structural vibration transmission in the presence of struc- tural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using finite element models. The numerical results obtained making use of this process are then compared with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that, even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency dependence. Comparison with results obtained by empirical formulas reveals that those of the standards cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary calculation procedures are required. A simple methodology to estimate the difference between numerical and standard predictions is here proposed allowing the calculation of an adaptation term that makes both approaches converge. This term was found to be solution-dependent, and thus should be evaluated for each structure.
Rocznik
Strony
189--197
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Department of Physics, System Engineering and Signal Theory, University of Alicante Mail Box 99; 03080 Alicante, Spain, jramis@ua.es
Bibliografia
  • 1. Brunskog J., Lhomond A., Ohlrich M. (2007), Attenuation and flanking transmission in lightweight structures, Proceedings of the 19th International Congress on Acoustics, Madrid, Spain.
  • 2. Brutel-Vuilmet C., Villot M., Guigou-Carter C., Jean P. (2006), Measurement of the sound reduction index as a function of the incidence angle by two different methods, Building Acoustics, 13, 1, 33-48.
  • 3. Brutel-Vuilmet C., Villot M., Guigou-Carter C. (2007), Use of the NAHtechnique to assess the effects of the incidence angle on the reduction index, Acta Acustica, 93, 3, 364-374.
  • 4. Clasen D., Langer S. (2007), Finite Element Approach for Flanking Transmission in Building Acoustics, Building Acoustics, 14, 1, 1-14.
  • 5. Craik R. (2001), The contribution of long flanking paths to sound transmission in buildings, Applied Acoustics, 62, 1, 2946.
  • 6. Crispin C., Mertens C., Blasco M., Ingelaere B., Van Damme M., Wuyts D. (2004), The vibration reduction index Kij: laboratory measurements versus predictions EN 12354-1 (2000), Internoise 2004, The 33rd International Congress and Exposition on Noise Control Engineering, Prague, Czech Republic.
  • 7. EN ISO (2000), 12354-1:2000. Building acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 1: Airborne sound insulation between rooms, International Organization for Standardization, Geneva.
  • 8. EN ISO (2000), 12354-2:2000. Building acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 2: Impact sound insulation between rooms, International Organization for Standardization, Geneva.
  • 9. Galbrun L. (2008), The prediction of airborne sound transmission between two rooms using first-order flanking paths, Applied Acoustics, 69, 12, 1332-1342.
  • 10. Gerretsen E. (1979), Calculation of the sound transmission between dwellings by partitions and flanking structures, Applied Acoustics, 12, 6, 413-433.
  • 11. Gerretsen E. (1986), Calculation of airborne and impact sound insulation between dwellings, Applied Acoustics, 19, 4, 245-264.
  • 12. Gerretsen E. (2008), Prediction models for building performance - European need and world wide use, Journal of the Acoustical Society of America, 123, 5, 3189 (one page).
  • 13. ISO (2006), 10848-parts 1, 2 and 3. Laboratory measurement of the flanking transmission of airborne and impact sound, between adjoining rooms.
  • 14. Kling C. (2008), Investigations into Damping in Building Acoustics by Use of Downscaled Models, Ph.D. Thesis, Aachen, Aachener Beitrィage zur Technischen Akustik.
  • 15. Mahn J. (2009), Prediction of Flanking Noise Transmission in Lightweight Building Constructions: A Theoretical and Experimental Evaluation of the Application of EN12354-1, Ph.D. Thesis, University of Canterbury, Department of Mechanical Engineering.
  • 16. Maluski S., Gibbs B. (2000), Application of a finiteelement model to low-frequency sound insulation in dwellings, Journal of the Acoustical Society of America, 108, 4, 1741-1751.
  • 17. Maynard J., Williams E., Lee Y. (1985), Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH, Journal of the Acoustical Society of America, 78, 4, 1395-1413.
  • 18. Metzen H.A. (1999), Accuracy of CEN-prediction models applied to German building situations, Building Acoustics, 6, 3-4, 325-340.
  • 19. Pedersen D.B. (1995), Estimation of Vibration Attenuation through Junctions of Building Structures, Applied Acoustics, 46, 3, 285-305.
  • 20. Santos P., Tadeu A. (2002), Acoustic insulation provided by a single wall separating two contiguous tunnels via BEM, Journal of Sound and Vibration, 257, 5, 945-965.
  • 21. Schneider M., Fischer H-M. (2005), Flanking transmission of masonry building elements with flexible interlayer, ForumAcusticum 2005, Budapest, Hungary
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0022-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.