PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Physical Model of the Nonlinear Sitar String

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The acoustic properties of the sitar string are studied with the aid of a physical model. The nonlinearity of the string movement caused by the bridge acting as an obstacle to the vibrating string is of special interest. Comparison of the model’s audio output to recordings of the instrument shows interesting similarities. The effects dispersion and bridge have on the sound of the instrument are demonstrated in the model.
Rocznik
Strony
73--79
Opis fizyczny
Bibliogr. 13 poz., fot., wykr.
Twórcy
autor
  • Institute for Music Studies, University of Vienna, Universit¨atscampus AAKH Spitalgasse 2-4, Hof 9, 1090 Vienna, Austria, sadjad.siddiq@gmx.at
Bibliografia
  • 1. Bertrand D. (1992), Les chevalets "plats " de la lutherie de l'Inde [in French], Editions de la Maison des sciences de lŐhomme, Paris.
  • 2. Burridge R., Kappraff J., Morshedi C. (1982), The Sitar String, a Vibrating String with a One-Sided Inelastic Constraint, SIAM Journal on Applied Mathematics, 42, 6, 1231-1251.
  • 3. Fletcher N., Rossing T. (1998), The physics of musical instruments, 2nd Ed., Springer, New York.
  • 4. Karjalainen M. (2002), 1-D Digital Waveguide Modeling for Improved Sound Synthesis, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1869-1872, Orlando.
  • 5. Krishnaswamy A., Smith J. (2003), Methods for simulating string collisions with rigid spatial obstacles, IEEE Worhshop on Applications of Signal Processing to Audio and Acoustics, 233-236, New Paltz.
  • 6. Lieber E. (1992), Dispersion und Dämpfung von Transversalschwingungen gespannter Saiten und ihre Bedeutung in der musikalischen Akustik [in German], Fortschritte der Akustik (DAGA 1992), 253-256.
  • 7. Raman C. (1921), On some Indian stringed Instruments, Proceedings of the Indian Association for the Cultivation of Science, 7, 29-33.
  • 8. Rauhala J., V쮉lim쮉ki V. (2006), Dispersion Modeling in Waveguide Piano Synthesis using tunable Allpass Filters, Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), 71-76, Montreal.
  • 9. Siddiq S. (2010), Physical Modelling of the sitar string, Proceedings of the Second ViennaTalk, Sept. 19-21, 2010, University of Music and Performing Arts Vienna, Austria, 137-140.
  • 10. Smith J. (1992), Physical Modeling using Digital Waveguides, Computer Music Journal, 16, 4, 74-91.
  • 11. Taguti T. (2007), Numerical Simulation of Vibrating String Subject to Sawari Mechanism, 19th International Congress on Acoustics, 1-6, Madrid.
  • 12. Valette C., Cuesta C. (1993) Mエecanique de la corde vibrante [in French], Hermès, Paris.
  • 13. Vyasarayani C., Birkett S., McPhee J. (2009), Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, Journal of the Acoustical Society of America, 125, 6, 3673-3682.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.