PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the Multi-element Synthetic Transmit Aperture Method for Medical Ultrasound Imaging Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the optimization problem for the multi-element synthetic transmit aperture method (MSTA) in ultrasound imaging applications. The optimal choice of the transmit aperture size is made as a trade-off between the lateral resolution, penetration depth and the frame rate. Results of the analysis obtained by a developed optimization algorithm are presented. The maximum penetration depth and lateral resolution at given depths are chosen as optimization criteria. The results of numerical experiments carried out in MATLAB Ž using synthetic aperture data of point reflectors obtained by the FIELD II simulation program are presented. The visualization of experimental synthetic aperture data of a tissue mimicking phantom and in vitro measurements of the beef liver performed using the SonixTOUCH Research system are also shown.
Słowa kluczowe
Rocznik
Strony
47--55
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland, yurijtas@ippt.pan.pl
Bibliografia
  • 1. Blotekjaer K., Ingebrigtsen K.A., Skeie H. (1973), Methods for analyzing waves in structures consisting of metal strips on dispersive media, IEEE Trans.Electron. Devices, ED20, 12, 1133-1138.
  • 2. Danicki E.J. (2002), Scattering by periodic cracks and theory of comb transducers, Wave Motion, 35, 4, 355-370.
  • 3. Danicki E.J., Tasinkevych Y. (2006), Nonstandard electrostatic problem for strips, J. Electrostat., 64, 6, 386-391.
  • 4. Gammelmark K.L., Jensen J.A. (2003), Multielement synthetic transmit aperture imaging using temporal encoding, IEEE Trans. Med. Imag., 22, 4, 552-563.
  • 5. Jensen J.A. (1996), Field: A Program for Simulating Ultrasound Systems, 10th Nordic-Baltic Conference on Biomedical Imaging Published in Medical & Biological Engineering & Computing, 34, 1, Part 1, 351-353.
  • 6. Jensen J.A., Svendsen B. (1992), Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., 39, 262-267.
  • 7. Jensen J.A., Nikolov S.I., Gammelmark K.L., Pedersen M.H. (2006), Synthetic aperture ultrasound imaging, Ultrasonics, 44, e5-e15.
  • 8. HOLM S. (1995), Focused multi-element synthetic aperture imaging, Department of Informatics, University of Oslo.
  • 9. Karaman M., Li P.C., O'Donnell M. (1995), Synthetic aperture imaging for small scale systems, IEEE Trans. Ultrason., Ferroelectr., Freq. Cont., 42, 3, 429-442.
  • 10. Lockwood G.R., Talman J.R., Brunke S.S. (1998), Real-time 3-d ultrasound imaging using sparse synthetic aperture beamforming, IEEE Trans. Ultrason., Ferroelectr., Freq. Cont. 45, 4, 980-988.
  • 11. Moreira A. (1992), Real-time synthetic aperture radar (SAR) processing with a new subaperture approach, IEEE Trans. Geosci. Remote Sens., 30, 4, 714-722.
  • 12. Nikolov S.I., Jensen J.A., Tomov B.G. (2008), Fast parametric beamformer for synthetic aperture imaging, IEEE Trans. Ultrason., Ferroelectr., Freq. Cont., 55, 8, 1755-1767.
  • 13. Nowicki A., Klimonda Z., Lewandowski M., Litniewski J., Lewin P.A., Trots I. (2007), Direct and post-compressed sound fields for different coded excitation, Acoustical Imaging, 28, 399-407.
  • 14. Perry R.M., Martinson L.W. (1978), Radar matched filtering, Radar Technology, Artech House, Boston, Ch. 11, 163-169.
  • 15. Stergiopoulos S., Sullivan E.J. (1989), Extended towed array processing by an overlap correlator, J. Acoust. Soc. Am., 86, 1, 158-171.
  • 16. Synnevag J.F., Austeng A., Holm S. (2005), Minimum variance adaptive beam-forming applied to medical ultrasound imaging, Proc. 2005 IEEE Ultrason. Symp., 1199-1202.
  • 17. Trots I., Nowicki A., Lewandowski M. (2008), Laboratory setup for synthetic aperture ultrasound imaging, Archives of Acoustics, 33, 4, 573-580.
  • 18. Trots I., Nowicki A., Lewandowski M. (2009), Synthetic transmit aperture in ultrasound imaging, Archives of Acoustics, 34, 4, 685-695.
  • 19. Trots I., Nowicki A., Lewandowski M., Tasinkevych Y. (2010), Multi-element synthetic transmit aperture in medical ultrasound imaging, Archives of Acoustics, 35, 4, 687-699.
  • 20. Tasinkevych Y. (2008), Scattering of H-polarized wave by a periodic array of thick-walled parallel plate waveguides, IEEE Trans. Antennas Propagat., 56, 10, 3333-3337.
  • 21. Tasinkevych Y. (2009), EM scattering by the parallel plate waveguide array with thick walls for oblique incidence, J. Electromagn. Waves Appl., 23, 11-12, 1611-1621.
  • 22. Tasinkevych Y., Danicki E. (2010), Full-wave analysis of periodic baffle system in beamforming applications, Archives of Acoustics, 35, 4, 661-675.
  • 23. Tasinkevych Y. (2010), Wave generation by a finite baffle array in applications to beam-forming analysis, Archives of Acoustics, 35, 4, 677-686.
  • 24. Tasinkevych Y., Danicki E.J. (2011), Wave generation and scattering by periodic baffle system in application to beam-forming analysis, Wave Motion, 48, 2, 130-145.
  • 25. Tasinkevych Y. (2011), Electromagnetic Scattering by Periodic Grating of Pec Bars, J. Electromagn. Waves Appl., 25, 5-6, 641-650.
  • 26. Yen N.C., Carey W. (1989), Application of synthetic aperture processing to towed-array data, J. Acoust. Soc. Am., 86, 2, 754-765.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.