PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methanogenic Microbial Communities in Sediment From the Coastal Area of Puck Bay (Southern Baltic)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, data on methanogenic Archaea communities in sediment from the coastal area of Puck Bay were investigated. Sediments were collected along the Hel Peninsula from areas characterized by the occurrence of gas bubbles. Based on the analysis of molecular markers, the presence of a specific methanogenic Archaea gene was detected at all stations. Further research involved the cloning and sequencing of methanogenic DNA. Based on the comparison of obtained genetic sequences with existing genetic databases, it was confirmed that all of the nucleotide sequences belonged to the domain Archaea. Furthermore, in the investigated sediment certain sequences had certain similarities to the sequences of organisms from the families Methanosarcinaceae, Methanospirillaceae and Methanocorpusculaceae.
Słowa kluczowe
Rocznik
Strony
33--39
Opis fizyczny
Bibliogr. 42 poz., mapki, wykr.
Twórcy
autor
autor
  • Dept. of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 48, 81-378 Gdynia, Poland, andrzej.reindl@ug.edu.pl
Bibliografia
  • 1.Bange, H.W. (2006). Nitrous oxide and methane in European coastal waters. Estuar. Coast. Shel. Sci. 70, 361-374. DOI:10.1016/j.ecss.2006.05.042.
  • 2.Bates, B.C. Kundzewicz Z.W. & Wu S. (2008). Climate Change and Water. Palutikof, J.P. (Eds.). Technical Paper of the Intergovernmental Panel on Climate Change, IPCC, Geneva.
  • 3.Busch, G. Großmann J. Sieber M. & Burkhardt M. (2009). A new and sound technology for biogas from solid waste and biomass. Water, Air, & Soil Pollution: Focus 9, 89-97.
  • 4.Doerfert, S.N. Reichlen M. Iyer P. Wang M. & Ferry J.G. (2009). Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int. J. Syst. Evol. Microbiol. 59, 1064-1069.
  • 5.Edlund A. (2007). Microbial diversity in Baltic Sea sediment. Doctoral dissertation. Swedish Univwersity of Agricultural Science, Uppsala.
  • 6.Forster, P. Ramaswamy V. Artaxo P. Berntsen T. Betts R. Fahey D.W. Haywood J. Lean J. Lowe D.C. Myhre G. Nganga J. Prinn R. Raga G. Schulz M. & Van Dorland M. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change, 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 7.Gitay, H. Suarez A. Watson R.T. & Dooken D.J. (2002). Climate change and biodiversity. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC, Geneva.
  • 8.Hales, B.A. Edwards C. Ritchie D.A. Hall G. Pickup R.W. & Saunders J.R. (1996). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668-675.
  • 9.Hanako, M. HideyukiT. Satoshi H. Hiroyuki I. Kohei N. Susumu S. & Yoichi K. (2009). Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int. J. Syst. Evol. Microbiol. 59, 714-718. DOI 10.1099/ijs.0.001677-0.
  • 10.Heyer, J. & Berger U. (2000). Methane emission from the Coastal Area in the Southern Baltic Sea. Estuar. Coast. Shelf. Sci. 51, 13-30. DOI:10.1006/ecss.2000.0616.
  • 11.Houghton, J.T. Filho L.G.M. & Griggs D.J. (1997). Stabilization of atmospheric Greenhouse Gases: Physical, biological and socio-economic implication. Maskell (Eds.). Technical Paper of the Intergovernmental Panel on Climate Change, IPCC, Geneva.
  • 12.Innis, M. A. & Gelfand D.H. (1990). Optimization of PCRs. [in:] PCR Protocols: a Guide to Methods and Applications. Innis, M. A. Gelfand D.H. Sninisky J.J. & White T.J. (eds.). Academic Press, 3-12, San Diego, CA.
  • 13.IPCC. (2007): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K & Reisinger, A. (eds.)], IPCC, Geneva, Switzerland.
  • 14.Jensen, J.B. & Fossing H. (2005). Methane in the seabed sediments of the south-western Baltic Sea. Geophysical Research Abstract. 7.
  • 15.Jørgensen, B.B. Bang M. & Blackburn T.H. (1990). Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series. 59, 39-54.
  • 16.Judd, A.G. (2003). The global importance and context of methane escape from the seabed. Geo-Mar Lett. 23, 147-154. DOI: 10.1007/s00367-003-0136-z.
  • 17.Judd, A.G. (2004). Natural seabed gas seeps as sources of atmospheric methane. Environ. Geol. 46, 988-996. DOI: 10.1007/s00254-004-1083-3.
  • 18.Judd, A.G. & Hovland M. (2007). Seabed fluid flow: the impact of geology, biology and the marine environment. Cambridge University Press. 20, pp.475.
  • 19.King, G.M. (1990). Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol. Ecol. 74, 309-323. DOI:10.1016/0378-1097(90)90684-I.
  • 20.Liikanen, A. Silvennoinen H. Karvo A. Rantakokko P. & Martikainen P.J. (2009). Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Env. Res. 14, 351-368.
  • 21.Liu, H. Ramnarayanan R. & Logan B.E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285. DOI: 10.1021/es034923g.
  • 22.Luton, P.E. Wayne J.M. Sharp R.J. & Riley P.W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148, 3521-3530.
  • 23.Martens, Ch.S. Albert D.B. & Alperin M.J. (1999). Stable isotope trading of anaerobic methane oxidation in the Gassy sediments of Eckernförde Bay, German Baltic Sea. American J. Sci. 299, 589 - 610.
  • 24.Masse, D.I. Croteau F. Patni N.K. & Masse L. (2003). Methane emissions from dairy cow and swine manure slurries stored at 10°C and 15°C. Canadian Biosystems Engineering. 45, 6.1-6.6.
  • 25.Mathys, M. Thiessen O. Theilen F. & Schmidt M. (2005). Seismic characterization of gas-rich near surface sediments in the Arkona Basin, Baltic Sea. Marine Geoph.Res. 26, 207-224.
  • 26.Mori, K. Yamamoto H. Kamagata Y. Hatsu M. & Takamizawa K. (2000). Methanocalculus pumilus sp. nov., a heavymetal-tolerant methanogen isolated from a waste-disposal site. Int. J. Syst. Evolut. Microb. 50, 1723 - 1729.
  • 27.Nunoura, T. Oida H. Miyazaki J. Miyashita A. Imachi H. & Takai K. (2008). Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. Microbiol. Ecology. 64, 240-247. DOI: 10.1111/j.1574-6941.2008.00451.x.
  • 28.Piker, L. Schmaljohann R. & Imhoff J.F. (1998). Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993- 1996). Aquatic Microbial Ecology. 14, 183-193.
  • 29.Reeburgh, W.S. (2007). Oceanic methane biogeochemistry. Chem. Rev.. 107, 486-513. DOI: 10.1021/cr050362v.
  • 30.Saitou, N. & Nei M. (1987). The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 4, 406-425.
  • 31.Sambrook, J. Fritsch E.F. Maniatis T. (1989). Molecular cloning: a laboratory manual. 2. ed., Cold Spring Harbor Laboratory Press, New York, 253pp.
  • 32.Schlüter, M. Sauter E.J. Anderson C.E. Dahlgaard H. & Dando P.R. (2004). Spatial distribution and budget for submarine groundwater discharge in Eckenförde Bay (Western Baltic Sea). Limnol. Oceanogr. 49, 157-167.
  • 33.Schmaljohann, R. (1996). Methane Dynamics in the sediment and water column of Kiel Harbour (Baltic Sea). Mar. Ecol. Prog. Ser. 131, 263-273.
  • 34.Shlimon, A.G. Friedrich M.W. Niemann H. Ramsing N.B. & Finster K. (2004). Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int. J. Syst. Evolut. Microb. 54, 759-763.
  • 35.Sowers, K.R. Johnson J.L. & Ferry J.G. (1984). Phylogenic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34, 444-450. DOI:10.1099/00207713-34-4-444.
  • 36.Steinberg, L.M. & Regan J.M. (2009). mcrA-Targeted Real-Time Quantitative PCR Method to Examine Methanogen Communities. Appl. Environ. Microbiol. 75, 4435-4442.
  • 37.Takao, I. Koji M. & Ken-ichiro S. (2010). Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 60, 2563-2566. DOI 10.1099/ijs.0.020131-0.
  • 38.von Klein, D. Arab H. Völker H. & Thomm M. (2002). Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles. 6(2), 103-110.
  • 39.Wegener, G. (2008). Methane oxidation and carbon assimilation in marine sediments. Doctoral dissertation. Bremen University.
  • 40.Whitman, W.B. Bowen T.L. Boone D.R. (2006). The methanogenic bacteria. In Dworkin M. (eds.), The Procaryotes: archaea. Bacteria: Firmicutes, Actinomycetes. (165-207). Springer.
  • 41.Wilkens, R. H. & Richardson M.D. (1998). The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckenförde Bay, Baltic Sea. Continental Shelf Research. 18, 1859-1892.
  • 42.Witkowski, A. (1993). Mikrofitobentos. In Korzeniewski K. (eds.), Zatoka Pucka. Foundation of Gdańsk University Development, Gdańsk, 395-415.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.