PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mercury distribution in muscles and internal organs of the juvenile and adult Baltic cod (Gadus morrhua callarias Linnaeus, 1758)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cod (Gadus marrhua L), a fish caught in the Baltic Sea, is very popular with consumers. Research on the distribution of mercury in cod tissues and organs was conducted on a group of adult (27) and juvenile (49) individuals in the years 2006-09. Total mercury concentration values in mature cod were always, on average, 1.7 times higher than those in juveniles. The highest HgT concentrations were found in the heart, while the lowest ones were found in the gills and gonads. The essential age-specific differences manifest in a relationship between the mercury concentration in fish muscles and brain. Mature individuals, i.e. of length >80 cm, accumulated Hg in muscles, most likely in an attempt to protect the nervous system from toxic exposure. In young individuals, more mercury was concentrated in the brain than in the muscles.. The distribution of HgT in organs as well as the low value of the [HgT]liver/[HgT]muscle ratio testify to relatively low-level mercury contamination in southern Baltic waters.
Rocznik
Strony
65--71
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanography, University of Gdańsk Al. Piłsudskiego 46, 81-378 Gdynia, Poland, l.falkowska@ug.edu.pl
Bibliografia
  • 1.Amlund, H., Lundebye, A.K., Berntssen, M.H.G., 2007. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure. Aquatic Toxicology 83, 323-30.
  • 2.Baatrup, E., Danscher, G., 1987. Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication: differentiation of two mercury pools by selenium. Ecotoxicology and Environmental Safety 14, 129-41.
  • 3.Belger, L., Forsberg, B.R., 2006. Factors controlling Hg levels in two predatory fish species in the Negro River Basin, Brazilian Amazon. Science of the Total Environment 367, 451-9.
  • 4.Block, R.J., Weiss, K.W., 1956. Amino Acid Handbook. Charles Thomas, Springfield, p. 386.
  • 5.Boudou, A., Ribeyre, F., 1983. Contamination of aquatic biocenoses by mercury compounds: an experimental ecotoxicological approach. in: Nriagu, J.O., (Ed.). Aquatic Toxicology. John Wiley & Sons, New York, pp. 73-116.
  • 6.Boudou, A., Ribeyre, F., 1996. Mercury in the food webs: accumulation and transfer mechanisms. in: Sigel, A., Sigel, H., (Eds.), Mercury and Its Effects on Environment and Biology. Marcel Dekker, New York7, pp. 289- 319.
  • 7.Burger, J., Gochfeld, M., 2007. Risk to consumers from mercury in Pacific cod (Gadusmacrocephalus) from the Aleutians: Fish age and size effects. Environmental Research 105, 276-84.
  • 8.Clarkson, T.W., 1997. The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences 34, 369-403.
  • 9.Clarkson, T.W., 2002. The three modern faces of mercury. Environmental Health Perspectives 110, 11-23.
  • 10.Chou Chiu, L., 2007. A time series of mercury accumulation and improvement of dietary feed in net caged Atlantic salmon (Salmosalar), Marine Pollution Bulletin 54, 720-25.
  • 11.Ciardullo, S., Aureli, F., Coni, E., Guandalini, E., Iosi, F., Raggia, A., Ruo, G., Cubadda, F., 2008, Bioaccumulation Potential of Dietary Arsenic, Cadmium, Lead, Mercury, and Selenium in Organs and Tissues of Rainbow Trout (Oncorhyncus mykiss) as a Function of Fish Growth. Journal and Agricultural and Food Chemestry 56, 2442-2451.
  • 12.Cizdziel, J., Hinners, T., Cross, C., Pollard, J., 2003. Distribution of mercury in tissues of five species of freshwater fish from Lake Mead, USA. Journal of Environmental Monitoring 5, 802-807.
  • 13.Downs, S.G., MacLeod, C.L., Lester, J.N., 1998. Mercury in precipitation and its relation to bioaccumulation in fish: a literature review. Water Air and Soil Pollution 108, 149-87.
  • 14.Falkowska, L., Kwaśniak, J., Bełdowska, M., 2010. The influence of the trophic level on changes in the merkury concentrations in fish from the coastal zone of the southern Baltic. Oceanological and Hydrobiological Studies 39, 1, 5-22.
  • 15.Fitzgerald, W.F., Clarkson, T.W., 1991. Mercury and monomethylmercury: present and future concerns. Environ Health Perspectives 96, 159-66.
  • 16.Fitzgerald, W.F., Mason, R.P., 1997. Biochemical cycling of mercury in the marine environment, in: Sigel, A., Sigel, H. (Eds.) Mercury and Its Effects on Environment and Biology. Marcel Decker Inc, New York, pp. 53-111.
  • 17.Foster EP, Drake, D.L., DiDomenico, G., 2000. Seasonal changes and tissue distribution of mercury in largemouth bass (Micropterussalmoides) from Dorena Reservoir, Oregon. Archives and Environmental of Contamination of Toxicology 38, 78-82.
  • 18.Giblin, F.J., Massaro, E.J., 1973. Pharmacodynamics of methyl mercury in the rainbow trout (Salmogairdneri): tissue uptake, distribution and excretion. Toxicology and Applied Pharmacology 24, 81-91.
  • 19.Harris, H., Pickering, I., George, G., 2003. The chemical form of mercury in fish. Science 301, pp. -1203.
  • 20.Havelková, M., Dušek, L., Némethová, D., Poleszczuk, G., Svobodová, Z., 2008. Comparison of Mercury Distribution Between Liver and Muscle - A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities; Sensors 8, 4095-109,doi: 10.3390/s8074095.
  • 21.Houserova´, P., Kuba´n, V., Kra´cmar, S., Sitko, J., 2007. Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environmental Pollution 145, 185-94.
  • 22.Kasper, D., Fernandes, E., Palermo, A., Monteiro Iozzi Dias, A.C., Ferreira, G.L., Leitão, R.P., et all. 2009. Mercury distribution in different tissues and trophic levels of fish from a tropical reservoir, Brazil Neotropical Ichthyology 7, 4, 751-8.
  • 23.Kehrig, H.A., Costa, M., Moreira, I., Malm, O., 2001. Methylmercury and total mercury in estuarine organisms from Rio de Janeiro, Brazil. Environmental Science and Pollution Research 8, 4, 275-279.
  • 24.Kosior, M., Trella, K., Jaworski, A., 2001. Fecundity of cod (Gadus morhua callarias L.) in the Southern Baltic in the late 1990s, Abbrev.: Acta Ichthyologica et Piscatoria 31, 2, 55-75.
  • 25.Leaner, J.J., Mason, R.P., 2002. Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictaluruspunctatus. Comparative Biochemistry and Physiology 132C, 247-59.
  • 26.Leaner, J.J., Mason, R.P., 2004. Methylmercury uptake and distribution kinetics in sheepshead minnows, Cyprinodonvariegatus, after exposure to CH3Hg-spiked food. Environmental Toxicology and Chemistry 23, 2138-2146.
  • 27.Lindqvist, O., Johnasson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., et all. 1991. Mercury in the Swedish environment: Recent research on causes, consequences and corrective methods. Water Air and Soil Pollution 55, 1-261.
  • 28.Luten, J.B., Bouquet, W., Riekwel-Booy, G., Rauchbaar, A.B., Scholte, M.W.M., 1987. Mercury in flounder, Platichtys flesus, Cod, Gadus morhua, and Perch, Perca fluviatilis, in relation to their length. Bulletin of Environmental Contamination and Toxicology 38, 318 - 323.
  • 29.Mason, R.P., Laporte, J.M., Andres, S., 2000. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium and cadmium by freshwater invertebrates and fish. Archives and Environmental of Contamination of Toxicology 38, 283- 97.
  • 30.Maury-Brachet, R., Durrieu, G., Yannick, D., Boudou, A., 2006. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Science of the Total Environment 368, 262- 70.
  • 31.Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics 29, 543-566.
  • 32.Polak-Juszczak, L., 2009. Temporal trends in the bioaccumulation of trace metals in herring, sprat, and cod from the southern Baltic Sea in the 1994-2003 period. Chemosphere 76, 1334-1339.
  • 33.Simoneau, M., Lucotte, M., Garceau, S., Laliberte, D., 2005. Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environmental Research 98, 73-82.
  • 34.Staveland, G., Marthinsen, I., Norheim, G., Julshamn, K., 1993. Levels of environmental pollutants in flounder (Platichthys flesus L.) and cod (Gadus morhua L.) caught in the waterway of Glomma, Norway. II. Mercury and arsenic. Archives of Environmental Contamination and Toxicology 24, 187-193.
  • 35.Svobodová, Z., Piačka, V., Vykusová, B., Máchová, J., Hejtmánek, M., Hrbková, M., et all. 1995. Residues of pollutants in siluriformes from various localities of the Czech Republic. Acta Veterinaria Brno 64, 195-208.
  • 36.Svobodová, Z., Dusek, L., Hejtmánek, M., Vykusová, B., Smíd, R., 1999. Bioaccumulation of mercury in various fish species from Orlík and Kamýr Reservoirs in the Czech Republic. Ecotoxicology and Environmental Safety 43, 231-240.
  • 37.Wang, W.X., Wong, R.S.K., 2003. Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus. Marine Ecology Progress Series 261, 257-268.
  • 38.Wiener, J.G., Spry, D.J., 1996. Toxicological significance of mercury in freshwater fish. in: Beyer, W.N., Heins, G.H., Redmon-Norwood, A.W,, (Eds.), Environmental Contaminants in Wildlife. Lewis Publications, Boca Raton, pp. 297-339.
  • 39.Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., Scheuhammer, A.M., 2003. Ecotoxicology of mercury. in: Hoffman, D.J., Rattner, B.A., Burton, G.A., Cairns, J., (Eds.), Handbook of ecotoxicology. Lewis Publ, Boca Raton7, 409-463.
  • 40.U.S. EPA. Estimated per capita fish consumption in the United States, EPA-821-C-02-003. U.S. Environmental Protection Agency, Washington, D.C., USA; August 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.