PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Lower Bound of the Second-order Nonlinearities of Boolean Bent Functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we find a lower bound of the second-order nonlinearities of Boolean bent functions of the form f(x) = [formula], where d1 and d2 are Niho exponents. A lower bound of the second-order nonlinearities of these Boolean functions can also be obtained by using a recent result of Li, Hu and Gao (eprint.iacr.org/2010 /009.pdf). It is shown in Section 3, by a direct computation, that for large values of n, the lower bound obtained in this paper are better than the lower bound obtained by Li, Hu and Gao.
Rocznik
Strony
413--422
Opis fizyczny
Bibliogr. 20 poz., tab.
Twórcy
autor
  • Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee–247667, Uttarakhand, INDIA, gsugata@gmail.com
Bibliografia
  • [1] Canteaut, A., Charpin, P., and Kyureghyan, G. M.: A new class of monomial bent functions, Finite Fields and their Applications, 14(2008), 221-241.
  • [2] Carlet, C.: Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications, IEEE Trans. Inf. Theory, 54(3)(2008), 1262-1272.
  • [3] Carlet, C.: On the nonlinearity profile of the Dillon function, http:// eprint.iacr.org/2009/577.pdf.
  • [4] Carlet, C., Mesnager, S.: Improving the upper bounds on the covering radii of binary Reed Muller codes. IEEE Trans. Inf. Theory, 53(1)(2007), 162-173.
  • [5] Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions, Journal of Combinatorial Theory, Series A 113(2006), 779-798.
  • [6] Dumer, I., Kabatiansky, G., Tavernier, C.: List decoding of second order Reed-Muller codes up to the Johnson bound with almost linear complexity, In: Proceedings of the IEEE International Symposium on Information Theory, Seattle, (2006), 138-142.
  • [7] Fourquet, R., Tavernier, C.: An improved list decoding algorithm for the second order Reed-Muller codes and its applications, Designs Codes Cryptogr., 49(2008), 323-340.
  • [8] Gangopadhyay, S., Sarkar, S., Telang, R.: On the lower bounds of the second-order nonlinearity of some Boolean function, Information. Science, 180(2)(2010), 266-273.
  • [9] Gode, R., Gangopadhyay, S.: On second order nonlinearities of cubic monomial Boolean functions, http: //eprint.iacr.org/2009/502.pdf.
  • [10] Gode, R., Gangopadhyay, S.: Third-order nonlinearities of a subclass of kasami functions, Cryptography. Commun, 2(2010), 69-83.
  • [11] Gode, R., Gangopadhyay, S.: On lower bounds of second-order nonlinearities of cubic bent functions constructed by concatenating Gold functions, Accepted in International Journal of Computer Mathematics, 2011.
  • [12] Kabatiansky, G., Tavernier, C.: List decoding of second order Reed-Muller codes, In : Proceedings of the Eighteen International Symposium of Communication Theory and Applications, Ambleside, UK, 2005.
  • [13] Knudsen, L. R., Robshaw, M. J. B.: Non-linear approximations in linear cryptanalysis, In : Proceedings EUROCRYPT'96 (Lecture Notes in Computer Science), Berlin, Germany: Springer-Verlag, 1070(1996), 224-236.
  • [14] Li, X., Hu, Y., Gao, J.: The lower bounds on the second order nonlinearity of cubic Boolean functions, http: // eprint.iacr.org/2010/009.pdf.
  • [15] Lidi, R., Niederreiter, H.: Introduction to finite fields and their applications, North-Holland, Amsterdam, 1994.
  • [16] Macwilliams, F. J., Solane, N. J. A.: The theory of Error-correcting Codes, Amsterdam: North-Holland Publishing Company, 1978.
  • [17] Rothaus, O. S.: On bent functions, Journal of Combinatorial Theory, 20(A)(1976), 300-305.
  • [18] Sun, G., Wu, C.: The lower bounds on the second order nonlinearity of three classes of Boolean functions with high nonlinearity, Information Sciences, 179 (3)(2009), 267-278.
  • [19] Sun, G., Wu, C.: The lower bound on the second-order nonlinearity of a class of Boolean function with high nonlinearity, Appl. Algebra Engrg. Comm. Comput. (AAECC), 22(2011), 37-45.
  • [20] K. Szymiczek, Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms, Algebra, Logic and Applications, 7(1997) Gordon & Breach Science Publishers.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0021-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.