PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Golay Coded Sequences in Synthetic Aperture Imaging Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the theoretical and experimental study of synthetic transmit aperture (STA) method combined with Golay coded transmission for medical ultrasound imaging applications. The transmission of long waveforms characterized by a particular autocorrelation function allows to increase the total energy of the transmitted signal without increasing the peak pressure. It can also improve signal- to-noise ratio and increase the visualization depth maintaining the ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm pitch excited by the 8 and 16-bits Golay coded sequences as well as a one cycle at nominal frequencies 4 MHz were used. The comparison of 2D ultrasound images of the tissue mimicking phantoms is presented to demonstrate the benefits of coded transmission. The image reconstruction was performed using synthetic STA algorithm with transmit and receive signals correction based on a single element directivity function.
Rocznik
Strony
913--926
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
autor
  • Department of Ultrasound Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland, igortr@ippt.gov.pl
Bibliografia
  • 1. Blotekjaer K., Ingebrigtsen K.A., Skeie H. (1973), Methods for analyzing waves in structures consisting of metal strips on dispersive media, IEEE Trans. Electron. Devices, ED20, 12, 1133-1138.
  • 2. Danicki E.J. (1974), Complementary code realization based on surface acoustic waves, Bulletin of Military Technical Academy, XXIII (1), 53-56, 1974.
  • 3. Danicki E.J. (2002), Scattering by periodic cracks and theory of comb transducers, Wave Motion, 35, 4, 355-370.
  • 4. Danicki E.J., Tasinkevych Y. (2006), Nonstandard electrostatic problem for strips, J. Electrostat., 64, 6, 386-391.
  • 5. Golay M.J.E. (1961), Complementary series, IRE Tran. Inf. Theory, IT-7, 82-87.
  • 6. Hongxia Y. (1997), Synthetic aperture methods for medical ultrasonic imaging, Thesis.
  • 7. Jensen J.A. (1996), Field: A program for simulating ultrasound systems, Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging Published in Medical & Biological Engineering & Computing, 34, Suppl. 1, Part 1, 351-353.
  • 8. Klimonda Z., Lewandowski M., Nowicki A., Trots I. (2005), Direct and postcompressed sound fields for different coded excitations - experimental results, Archives of Acoustics, 30, 4, 507-514.
  • 9. Nikolov S.I. (2001), Synthetic aperture tissue and flow ultrasound imaging, PhD Thesis, Orsted. DTU, Technical University of Denmark, 2800, Lyngby, Denmark.
  • 10. Nowicki A., Klimonda Z., Lewandowski M., Litniewski J., Lewin P.A., Trots I. (2007), Direct and post-compressed sound fields for different coded excitation, Acoustical Imaging, 28, 5, 399-407.
  • 11. Nowicki A., Secomski W., Litniewski J., Trots I. (2003), On the application of signal compression using Golay's codes sequences in ultrasound diagnostic, Archives of Acoustics, 28, 4, 313-324.
  • 12. Selfridge A.R., Kino G.S., Khuri-Yakub B.T. (1980), A theory for the radiation pattern of a narrow-strip acoustic transducer, Appl. Phys. Lett., 37, 1, 35-36.
  • 13. Tasinkevych Y. (2008), Scattering of H-polarized wave by a periodic array of thick-walled parallel plate waveguides, IEEE Trans. Antennas Propagat., 56, 10, 3333-3337.
  • 14. Tasinkevych Y. (2009), EM scattering by the parallel plate waveguide array with thick walls for oblique incidence, J. Electromagn. Waves Appl., 23, 11-12, 1611-1621.
  • 15. Tasinkevych Y. (2010), Wave generation by a finite baffle array in applications to beamforming analysis, Archives of Acoustics, 35, 4, 677-686.
  • 16. Tasinkevych Y. (2011), Electromagnetic Scattering by Periodic Grating of Pec Bars, J. Electromagn. Waves Appl., 25, 5-6, 641-650.
  • 17. Tasinkevych Y., Danicki E. (2010), Full-wave analysis of periodic baffle system in beamforming applications, Archives of Acoustics, 35, 4, 661-675.
  • 18. Tasinkevych Y., Danicki E.J. (2011), Wave generation and scattering by periodic baffle system in application to beam-forming analysis, Wave Motion, 48, 2, 130-145.
  • 19. Tasinkevych Y., Trots I., Nowicki A., Lewin P.A. (2012), Modified synthetic transmit aperture algorithm for ultrasound imaging, Ultrasonics, 52, 4, 333-342.
  • 20. Trahey G.E., Nock L.F. (1992), Synthetic receive aperture imaging with phase correction for motion and for tissue ihomogeneities - Part I: Basic principles, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 39, 4, 489-495.
  • 21. Trots I., Nowicki A., Lewandowski M. (2009), Synthetic transmit aperture in ultrasound imaging, Archives of Acoustics, 34, 4, 685-695.
  • 22. Trots I., Nowicki A., Lewandowski M., Tasinkevych Y. (2010), Multi-element synthetic transmit aperture in medical ultrasound imaging, Archives of Acoustics, 35, 4, 687-699.
  • 23. Trots I., Nowicki A., Secomski W., Litniewski J. (2004), Golay sequences - side-lobe canceling codes for ultrasonography, Archives of Acoustics, 29, 1, 87-97.
  • 24. Xu M., Wang L.V. (2003), Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction, Phys. Rev. E, 67, 5, 1-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.