PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization Design of Hybrid Mufflers on Broadband Frequencies Using the Genetic Algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, there has been research on high frequency dissipative mufflers. However, research on shape optimization of hybrid mufflers that reduce broadband noise within a constrained space is sparse. In this paper, a hybrid muffler composed of a dissipative muffler and a reactive muffler within a constrained space is assessed. Using the eigenvalues and eigenfunctions, a coupling wave equation for the perforated dissipative chamber is simplified into a four-pole matrix form. To efficiently find the optimal shape within a constrained space, a four-pole matrix system used to evaluate the acoustical performance of the sound transmission loss (STL) is eval- uated using a genetic algorithm (GA). A numerical case for eliminating a broadband venting noise is also introduced. To verify the reliability of a GA optimization, optimal noise abatements for two pure tones (500 Hz and 800 Hz) are exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models has been checked using experimental data. Results indicate that the maximal STL is precisely located at the desired target tone. The optimal result of case studies for eliminating broadband noise also reveals that the overall sound power level (SWL) of the hybrid muffler can be reduced from 138.9 dB(A) to 84.5 dB(A), which is superior to other mufflers (a one-chamber dissipative and a one-chamber reactive muffler). Consequently, a successful approach used for the optimal design of the hybrid mufflers within a constrained space has been demonstrated.
Rocznik
Strony
795--822
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
  • Chung Chou University of Science and Technology Department of Mechanical and Automation Engineering 6, Lane 2, Sec. 3, Shanchiao Rd., Yuanlin Changhua 51003, Taiwan, R.O.C., minchie.chiu@msa.hinet.net
Bibliografia
  • 1. Allard J.F., Champoux Y. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, J. Acoust. Soc. Am., 41, 3346-3353.
  • 2. Chiu M.C. (2009), SA optimization on multi-chamber mufflers hybridized with perforated plug-inlet under space constraints, Archives of Acoustics, 34, 3, 305-343.
  • 3. Chiu M.C., Chang Y.C., Yeh L.J. (2008), Numerical assessment of optimal one-chamber perforated mufflers by using GA method, Material Science Forum, 594, 368-376.
  • 4. Cummings A., Chang I.J. (1987), Internal mean flow effects on the characteristics of bulk-reacting liners in circular ducts, Acustica, 64, 169-178.
  • 5. Cummings A., Chang I.J. (1988), Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent, Journal of Sound and Vibration, 127, 1-17.
  • 6. Glav R. (2000), The transfer matrix for a dissipative silencer of arbitrary cross-section, Journal of Sound and Vibration, 236, 575-594.
  • 7. Holland J. (1975), Adaptation in Natural and Artificial System, Ann Arbor, University of Michigan Press.
  • 8. Jayaraman K., Yam K. (1981), Decoupling approach to modeling perforated tube muffler component, J. Acous. Soc. Am., 69, 2, 390-396.
  • 9. Johnson D.L., Koplik J., Dashen R. (1987), Theory of dynamic permeability and tortuosity in fluid saturated porous media, J. Fluid Mech., 176, 379-402.
  • 10. Jong D. (1975), An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral Thesis, Department of Computer and Communication Sciences, Ann Arbor, University of Michigan.
  • 11. Ko S.H. (1975), Theoretical analyses of sound attenuation in acoustically lined flow ducts separated by porous splitters (rectangular, annular and circular ducts), Journal of Sound and Vibration, 39, 471-487.
  • 12. Lee I.J. (2005), Acoustic Characteristics of Perforated Dissipative and Hybrid Silencers, Doctor thesis, Ohio State University.
  • 13. Morse P.M. (1939), Transmission of sound inside pipes, J. Acoust. Soc. Am., 11, 205-210.
  • 14. Munjal M.L. (1987), Acoustics of Ducts and Mufflers with Application to Exhaust and-Ventilation System Design, John Wiley and Sons, New York.
  • 15. Munjal M.L. (2003), Analysis and design of pod silencers, Journal of Sound and Vibration, 262, 497-507.
  • 16. Munjal M.L., Rao K.N., Sahasrabudhe A.D. (1987), Aeroacoustic analysis of perforated muffler components, Journal of Sound and Vibration, 114, 2, 173-188.
  • 17. Peat K.S. (1988), A numerical decoupling analysis of perforated pipe silencer elements, Journal of Sound and Vibration, 123, 2, 199-212.
  • 18. Peat K.S. (1991), A transfer-matrix for an absorption silencer element, Journal of Sound and Vibration, 146, 353-360.
  • 19. Rao K.N., Munjal M.L. (1984), A generalized decoupling method for analyzing perforated element mufflers, Nelson Acoustics Conference, Madison.
  • 20. Scott R.A. (1946), The propagation of sound between walls of porous material, Proceedings of the Physical Society, 58, 358-368.
  • 21. Selamet A., Lee I.J., Huff N.T. (2003), Acoustic attenuation of hybrid silencers, Journal of Sound and Vibration, 262, 509-527.
  • 22. Selamet A., Lee I.J., Ji Z.L., Huff N.T. (2001), Acoustic attenuation performance of perforated concentric absorbing silencers, SAE Noise and Vibration Conference and Exposition, SAE Paper No. 2001-01-1435, Traverse City, MI, April 30 -May 3.
  • 23. Sullivan J.W. (1979), A method of modeling perforated tube muffler components I: theory, J. Acous, Soc. Am., 66, 772-778.
  • 24. Sullivan J.W. (1979), A method of modeling perforated tube muffler components II: theory, J. Acous. Soc. Am., 66, 779-788.
  • 25. Sullivan J.W., Crocker M.J. (1978), Analysis of concentric tube resonators having unpartitioned cavities, J. Acous. Soc. Am., 64, 207-215.
  • 26. Thawani P.T., Jayaraman K. (1983), Modeling and applications of straight-through resonators, J. Acous. Soc. Am., 73, 4, 1387-1389.
  • 27. Wang C.N. (1992), The Application of Boundary Element Method in the Noise Reduction Analysis for the Automotive Mufflers, Doctor thesis, Taiwan University.
  • 28. Wang C.N., Hsieh C.C. (2000), Experimental study for muffler components with flow, Bulletin of the College of Engineering, N.T.U., 78, 67-74.
  • 29. Xu M.L., Selamet A., Lee I.J., Huff N.T. (2004), Sound attenuation in dissipative expansion chambers, Journal of Sound and Vibration, 272, 1125-1133.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.