Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study is devoted to the instantaneous acoustic heating of a shear-thinning fluid. Apparent viscosity of a shear-thinning fluid depends on the shear rate. That feature distinguishes it from a viscous Newtonian fluid. The special linear combination of conservation equations in the differential form makes it possible to derive dynamic equations governing both the sound and non-wave entropy mode induced in the field of sound. These equations are valid in a weakly nonlinear flow of a shear- thinning fluid over an unbounded volume. They both are instantaneous, and do not require a periodic sound. An example of a sound waveform with a piecewise constant shear rate is considered as a source of acoustic heating.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
629--642
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Gdansk University of Technology Faculty of Applied Physics and Mathematics Narutowicza 11/12, 80-233 Gdańsk, Poland, anpe@mif.pg.gda.pl
Bibliografia
- 1. Barnes H.A. (1999), The yield stress - a review or 'παντα ρει'-everything flows?, J. Non- Newtonian Fluid. Mech., 81, 133-178.
- 2. Benito S., Bruneau C.-H., Colin T., Gay C., Molino F. (2008), An elasto-visco-plastic model for immortal foams or emulsions, Eur. Phys. J. E, 25, 225-251.
- 3. Bingham E.C. (1916), An investigation of the laws of plastic flow, U.S. Bureau of Standards Bulletin, 13, 309-353.
- 4. Cheremisihoff N.P. [Ed.] (1988), Encyclopedia of Fluid Mechanics: Rheology and Non-Newtonian Flows, Gulf Publishing Company, Houston, Texas.
- 5. Chu B.-T., Kovasznay L.S.G. (1958), Nonlinear interactions in a viscous heat-conducting compressible gas, J. Fluid. Mech., 3, 494-514.
- 6. Collyer A.A. (1973), Time independent fluids, Phys. Educ., 8, 333-338.
- 7. Hamilton M., Morfey C. (1998), Model equations, [in:] Nonlinear Acoustics, Hamilton M., Blackstock D. [Eds.], pp. 41-63, Academic Press, New York.
- 8. Hartman C.L., Child S.Z., Penney D.P., Carstensen E.L. (1992), Ultrasonic heating of lung tissue, J. Acoust. Soc. Am., 91, 1, 513-516.
- 9. Kuznetsov V.P. (1971), Equations of nonlinear acoustics, Sov. Phys. Acoust., 16, 467-470.
- 10. Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics. Part I, Acustica, 82, 579-606.
- 11. Perelomova A. (2003), Acoustic radiation force and streaming caused by non-periodic acoustic source, Acta Acustica united with Acustica, 89, 754-763.
- 12. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357, 42-47.
- 13. Perelomova A. (2008), Acoustic heating in a weakly dispersive fluid flow, Acta Acustica, 94, 3, 382-387.
- 14. Reynolds O. (1885), On the dilatancy of media composed of rigid particles in contact, with experimental illustrations, Phil. Mag., 20, 5, 469-481.
- 15. Riemann B. (1953), The collected works of Bernard Riemann, Dover, New York.
- 16. Roberts G.P., Barnes H.A., Carew P. (2001), Modelling the flow behaviour of very shear-thinning liquids, Chemical Engineering Science, 56, 5617-5623.
- 17. Rudenko O.V. (2007), Nonlinear waves: some biomedical applications, Physics-Uspekhi, 50, 4, 359-367.
- 18. Rudenko O.V., Soluyan S.I. (1977), Theoretical foundations of nonlinear acoustics, Plenum, New York.
- 19. Wilkinson W.H. (1960), Non-Newtonian fluids: Fluid Mechanics, Mixing and Heat Transfer, Pergamon, London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0039