PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study of Interaction of Ultrasonic and Optical Wave in Optical Fiber Using the Air Gap

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There exist some possibilities for simultaneous delivery of laser radiation and ultrasounds of low frequency and high intensity: introducing ultrasound oscillations in the optical fiber by the rigid connection of the fiber to the vibrating element and non-contact influence of the ultrasonic wave on the laser beam. The article presents the results of Matlab simulations and experimental studies of influence of the ultrasonic wave on the laser beam. A role of the air gap, and its influence on laser- ultrasonic transmission in optical fiber was examined. Advantages and disadvantages of both solutions of interaction of ultrasonic and optical waves in, e.g., surgical applications are discussed.
Rocznik
Strony
613--628
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
autor
  • Wroclaw University of Technology Institute of Telecommunications, Teleinformatics and Acoustics Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, tadeusz.gudra@pwr.wroc.pl
Bibliografia
  • 1. Achmid C.A., Miller M.S., Carmen G.P., Murphy K.A., Claus R.O. (1993), Delamination detection scheme incorporating optical fiber sensors, Proceedings, IEEE, 4-7.
  • 2. Bhatia V., Murphy K., Claus R.O., Jones M.E., Grace J.L., Tran T.A., Greene J.A. (1996), Optical fibre based absolute extrinsic Fabry-Pérot interferometric sensing system, Meas. Sci. Technol., 7, 58-61.
  • 3. De Paula R.P., Moore E.L. (1984), Review of all-fiber phaser polarization modulators, SPIE, 478 Fiber Optic and Laser Sensors II, 3-11.
  • 4. Desinger K., Helfmann J., M쮞ller G. (1996), A new application system for laser and ultrasonic therapy in endoscopic surgery, SPIE, 2922, 268-274.
  • 5. Desinger K., Helfmann J., Stein T., Liebold K., Muller G. (1998), A new application system for simultaneous laser and ultrasonic transmission in endoscopic surgery (LUST), SPIE, 3249, 94-101.
  • 6. Designer K., Liebold K., Helfmann J., Stein T., M쮞ller G. (1999), A new system for a combined laser and ultrasound application in neurosurgery, Neurol. Res., 21, 84-87.
  • 7. Grattan K.T.V., Megitt B.T. (1995), Optical fiber sensor technology, Chapman & Hall, London.
  • 8. Gudra T., Muc S. (2007), A preliminary analysis of possibilities of compensating faults of laser and ultrasonic technologies in surgery, Archives of Acoustics, 32, 4 (Supplement), 117-122.
  • 9. Jiang Y., Pang S. (1997), Tunable wavelength filter in extrinsic Fabry-Pérot of optical fiber, Int. J. Infrared Millimet Waves, 18, 12, 2375-2382.
  • 10. Kaczmarek Z. (2006), Fiber optic sensors and transducers [in Polish: Światłowodowe czujniki i przetworniki pomiarowe], Agenda Publishing PAK, Warszawa.
  • 11. Kersey A.D., Dandridge A. (1989), Application of fiber-optic sensors, Proceedings 39th IEEE Electronic Components Conference, 472-478.
  • 12. Kim S.-H., Lee J.-J. (2003), Phase-shifted transmission/reflection-type hybrid extrinsic Fabry-Pérot interferometric optical fiber sensors, J. of Lightwave Technol., 21, 3, 797-804.
  • 13. Kim S.-H., Lee J.-J. (2005), Parameter design of signal processing for transmission/reflection-type hybrid extrinsic Fabry-Pérot interferometric optical fiber sensors, Smart Mater. Struct., 14, 183-190.
  • 14. Kim S.-H., Lee J.-J., Kwon D.-S. (2001), Signal processing algorithm for transmissiontype Fabry-Pérot interferometric optical fiber sensor, Meas. Mater. Struct., 10, 736-742.
  • 15. Kim S.-H., Lee J.-J., Lee D.-C., Kwon I.-B. (1999), A study on the development of transmission type extrinsic Fabry-Pérot interferometric optical fiber sensor, J. Lightwave Technol., 17, 10, 1869-1874.
  • 16. Leng J., Asundi A. (1999), Active vibration control system of smart structures based on FOS and ER actuator, Smart Mater. Struct., 8, 222-256.
  • 17. Muc S. (2008), Experimental study of transmission of ultrasonic wave in optical fibers, Archives of Acoustics, 33, 4, 619-625.
  • 18. Muc S. (2009), Transmission of ultrasonic waves in optical fibers with the use of sandwich type transducer, Archives of Acoustics, 34, 4, 735-745.
  • 19. Muc S., Gudra T. (2011), Transmission of ultrasonic waves via optical silica glass fiber doped by 7.5% of TiO2 with the use of power sandwich transducer, Archives of Acoustics, 36, 1, 141-150.
  • 20. Muc S., Gudra T., Bereś-Pawlik E. (2009a), The possibility of a simultaneous transmission of ultrasound and laser radiation via flexible optical silica glass fibre, Acta Physica Polonica A, 116, 3, 359-362.
  • 21. Muc S., Gudra T., Bereś-Pawlik E. (2009b), Experimental study of simultaneous transmission of a light wave and ultrasonic wave in an optical fiber with the use of Mach-Zehnder interferometer, Archives of Acoustics, 34, 4, 697-714.
  • 22. Roe M.P., Wacogne B., Pannell C.N. (1996), High-Efficiency All-Fiber Phase Modulator Using an Annular Zinc Oxide Piezoelectric Transducer, IEEE Photonics Technology Letters, 8, 8, 1026-1028
  • 23. Sathitanon N., Pullteap S. (2008), A Fiber Optic Interferometric Sensor for Dynamic Measurement, International Journal of Computer Science and Engineering, 2, 2, 63-66.
  • 24. Seo D.-C., Lee J.-J., Kwon I.-B. (2002), Monitoring of fatigue crack growth of cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry-Pérot interferometric optical fiber sensors, Smart Mater. Struct., 11, 917-924.
  • 25. Singh N., Jain S.C., Aggarwal A.K., Bajpai R.P. (2004), Development and experimental studies of fibre optic extrinsic Fabry-Pérot interferometric sensor for measurement of strain in structures, Research Current Science, 86, 2, 309-314.
  • 26. Tschepe J., Desinger K., Helfmann J., Herrig M., M쮞ller G. (1994), The transmission of high and low power acoustical transient waves via optical fibers, EEE Ultrasonics Symposium, 1899-1901.
  • 27. Wild G., Hinckley S. (2008), Acousto-ultrasonic optical fiber sensors: overview and state of-the art, IEEE Sensors Journal, 8, 8, 1184-1193.
  • 28. Yu B., Kim D.W., Deng J., Xiao H., Wang A. (2003), Fiber Fabry-Pérot sensors for detection of partial discharges in power transformers, Applied Optics, 42, 16, 3241-3250.
  • 29. Zharov V.P., Latyshev A.S. (1999), Laser-ultrasonic technologies for medicine, SPIE, 3590, 66-77.
  • 30. Ziętek B. (2004), Optoelectronics [in Polish: Optoelektronika], Toruń
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.