PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Inverse Method to Obtain Porosity, Fibre Diameter and Density of Fibrous Sound Absorbing Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material's parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data.
Rocznik
Strony
561--574
Opis fizyczny
Bibliogr. 32 poz., fot., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Polytechnic University of Valencia Research Institute for Integrated Coastal Zone Management-IGIC Grao de Gandia 46730 (Valencia), Spain, jesalba@fis.upv.es
Bibliografia
  • 1. Allard J.F., Champoux Y. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, Journal of the Acoustical Society of America, 91, 6, 3346-3353.
  • 2. Arenas J.P., Crocker M.J. (2010), Recent trends in porous sound absorbing materials for noise control, Sound and Vibration, 44, 7, 12-17.
  • 3. Atalla Y., Panneton R. (2005), Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, 33, 1, 11-24.
  • 4. Attenborough K. (1982), Acoustical characteristics of porous materials, Physics Reports (Review Section of Physics Letters), 82, 3, 79-227.
  • 5. Attenborough K. (1983), Acoustical characteristics of rigid fibrous absorbents and granular materials, Journal of the Acoustical Society of America, 73, 3, 785-799.
  • 6. Bies D.A., Hansen C.H. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13, 5, 357-391.
  • 7. Champoux Y., Stinson M.R., Daigle G.A. (1991), Air-based system for the measurement of porosity, Journal of the Acoustical Society of America, 89, 2, 910-916.
  • 8. Chazot J.D., Antoni J., Zhang E. (2010), Characterization of poroelastic materials with a Bayesian approach, 10eme Congres Francais d'Acoustique, Lyon, 12-16 April.
  • 9. Crocker M.J., Arenas J.P. (2007), Use of Sound-Absorbing Materials, [in:] Handbook of Noise and Vibration Control, Crocker M.J. [Ed.], pp. 696-713, John Wiley and Sons, New York.
  • 10. Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, 2, 105-116.
  • 11. Dunn I.P., Davern W.A. (1986), Calculation of acoustic impedance of multi-layer absorbers, Applied Acoustics, 19, 5, 321-334.
  • 12. Fellah Z.E.A., Berger S., Lauriks W., Depollier C. (2003a), Measuring the porosity and the tortuosity of porous materials vie reflected waves at oblique incidence, Journal of the Acoustical Society of America, 113, 5, 2424-33.
  • 13. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Fellah M. (2003b), Measuring the porosity of porous materials having a rigid frame via reflected waves: a time domain analysis with fractional derivatives, Journal of Applied Physics, 93, 1, 296-303.
  • 14. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Trompette P., Chapelon J-Y. (2003c), Ultrasonic measurement of the porosity and tortuosity of air saturated random packings of beads, Journal of Applied Physics, 93, 11, 9352-59.
  • 15. Fellah Z.E.A., Mitri F.G., Fellah M., Ogam E., Depollier C. (2007), Ultrasonic characterization of porous absorbing materials: Inverse problem, Journal of Sound and Vibration, 302, 4-5, 746-759.
  • 16. Garai M., Pompoli F. (2005), A simple empirical model of polyester fibre materials for acoustical applications, Applied Acoustics, 66, 12, 1383-1398.
  • 17. ISO (1998), 10534-2:1998. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer-function method, International Organization for Standardization, Geneva.
  • 18. Kidner M.R.F., Hansen C.H. (2008), A comparison and review of theories of the acoustics of porous materials, International Journal of Acoustics and Vibration, 13, 3, 112-119.
  • 19. Lindfield G., Penny J. (1995), Numerical Methods Using Matlab (Ellis Horwood Series in Mathematics & Its Applications), Pearson Education, New York.
  • 20. Miki Y. (1990a), Acoustical properties of porous materials-modifications of Delany-Bazley models, Journal of the Acoustical Society Jpn (E), 11, 1, 19-24.
  • 21. Miki Y. (1990b), Acoustical properties of porous materials-Generalizations of empirical models, Journal of the Acoustical Society Jpn (E), 11, 1, 25-28.
  • 22. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992), Numerical Recipes In C (Second Edition), Cambridge University Press, Cambridge.
  • 23. Ramis J., Alba J., del Rey R., Escuder E., Sanchis V. (2010), New absorbent material acoustic based on kenaf 's fibre, Materiales de Construccion, 60, 299, 133-143.
  • 24. Shoshani Y., Yakubov Y. (2000), Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs, Applied Acoustics, 59, 1, 77-87.
  • 25. Umnova O., Attenborough K., Ho-Chul S., Cummings A. (2005), Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials, Applied Acoustics, 66, 6, 607-624.
  • 26. Voronina N. (1994), Acoustical properties of fibrous materials, Applied Acoustics, 42, 2, 165-174.
  • 27. Voronina N. (1996), Improved empirical model of sound propagation through a fibrous material, Applied Acoustics, 48, 2, 121-132.
  • 28. Voronina N. (1998), An empirical model for elastic porous materials, Applied Acoustics, 55, 1, 67-83.
  • 29. Voronina N. (1999), An empirical model for rigid-frame porous materials with low porosity, Applied Acoustics, 58, 3, 295-304.
  • 30. Voronina N., Horoshenkov K.V. (2003), A new empirical model for the acoustic properties of loose granular media, Applied Acoustics, 64, 4, 415-432.
  • 31. Wang X., Eisenbrey J., Zeitz M., Sun J.Q. (2004), Multi-stage regression analysis of acoustical properties of polyurethane foams, Journal of Sound and Vibration, 273, 4-5, 1109-1117.
  • 32. Wilson D.K. (1997), Simple, relaxational models for the acoustical properties of porous media, Applied Acoustic, 50, 3, 171-188.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.