PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active Noise-Vibration Control using the Filtered-Reference LMS Algorithm with Compensation of Vibrating Plate Temperature Variation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibrating plates have been recently used for a number of active noise control applications. They are resistant to difficult environmental conditions including dust, humidity, and even precipitation. However, their properties significantly depend on temperature. The plate temperature changes, caused by ambient temperature changes or plate heating due to internal friction, result in varying response of the plate, and may make it significantly different than response of a fixed model. Such mismatch may deteriorate performance of an active noise control system or even lead to divergence of a model-based adaptation algorithm. In this paper effects of vibrating plate temperature variation on a feedforward adaptive active noise reduction system with the multichannel Filtered-reference LMS algorithm are examined. For that purpose, a thin aluminum plate is excited with multiple Macro-Fiber Composite actuators. The plate temperature is forced by a set of Peltier cells, what allows for both cooling and heating the plate. The noise is generated at one side of the plate, and a major part of it is transmitted through the plate. The goal of the control system is to reduce sound pressure level at a specified area on the other side of the plate. To guarantee successful operation of the control system in face of plate temperature variation, a gain-scheduling scheme is proposed to support the Filteredreference LMS algorithm.
Rocznik
Strony
65--76
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
Bibliografia
  • 1. Branski A., Szela S. (2008), Improvement of effectiveness in active triangular plate vibration reduction, Archives of Acoustics, 33, 4, 521-530.
  • 2. Elliott S. (2001), Signal Processing for Active Control, Academic Press, London.
  • 3. Fahy F., Gardonio P. (2007), Sound and Structural Vibration, Second edition, Elsevier, Oxford.
  • 4. Fujii K., Kashihara K., Muneyasu M., Morimoto M. (2010), Study on application of cascade connection of recursive and non-recursive filters to noise control filter, Proceedings of 17th International Congress of Sound and Vibration, Cairo.
  • 5. Hansen C.H., Snyder S.D. (1997), Active Control of Noise and Vibration, E & FN Spon, London.
  • 6. Heaton A.G. (1963), Thermoelectrical cooling: Material characteristics and applications, Proceedings of the Institution of Electrical Engineers., 110, 7, 1277-1287.
  • 7. Kuo S.M., Morgan D.R. (1996), Active Noise Control Systems, John Wiley & Sons, Inc., New York.
  • 8. Larsson M., Johansson S., Claesson I., Håkansson L. (2009), A Module Based Active Noise Control System for Ventilation Systems, Part I: Influence of Measurement Noise on the Performance and Convergence of the Filtered-x LMS Algorithm, International Journal of Acoustics and Vibration, 14, 4, 188-195.
  • 9. Leniowska L. (2006), Effect of active vibration control of a circular plate on sound radiation, Archives of Acoustics, 31, 1, 77-87.
  • 10. Leniowska L., Kos P. (2009), Self-tuning control with regularized RLS algorithm for vibration cancellation of a circular plate, Archives of Acoustics, 34, 4, 613-624.
  • 11. Lizhong X., Zhentong W. (2009), Electromechanical Dynamics For Microplate, International Journal of Acoustics and Vibration, 14, 4, 12-23.
  • 12. National Semiconductors (2000), LM35 Precision Centigrade Temperature Sensors, Retrived October 14t, 2010 from http://www.national.com/ds/LM/LM35.pdf.
  • 13. Pawełczyk M. (2005), Feedback Control of Acoustic Noise at Desired Locations, Silesian University of Technology, Gliwice.
  • 14. Pietrzko S.J. (2009), Contributions to Noise and Vibration Control Technology, AGH - University of Science and Technology Press, Kraków.
  • 15. Smart Material (2010), MFC, Retrieved October 14th, 2010 from http://www.smartmaterial.com/Smart-choice.php?from=MFC.
  • 16. Tanaka N. (2009), Cluster Control of Distributed-Parameter Structures, International Journal of Acoustics and Vibration, 14, 1, 24-34.
  • 17. Tawfik M., Baz A. (2004), Experimental and Spectral Finite Element Study of Plates with Shunted Piezoelectric Patches, International Journal of Acoustics and Vibration, 9, 2, 87-97.
  • 18. Wiciak J. (2008), Sound radiation by set of L-jointed plates with four pairs of piezoelectric elements, The European Physical Journal Special Topics, 154, 1, 229-233
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.