PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A One-Mass Physical Model of the Vocal Folds with Seesaw-Like Oscillations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A low-dimensional physical model of small-amplitude oscillations of the vocal folds is proposed here. The model is a simplified version of the body-cover one in which mucosal surface wave propagation has been approximated by the seesaw-like oscillation of the vocal fold about its fulcrum point whose position is adjustable in both the horizontal and vertical directions. This approach works for 180 degree phase difference between the glottal entry and exit displacements. The fulcrum point position has a significant role in determining the shape of the glottal flow. The vertical position of the fulcrum point determines the amplitude of the glottal exit displacement, while its horizontal position governs the shape and amplitude of the glottal flow. An increment in its horizontal position leads to an increase in the amplitude of the glottal flow and the time period of the opening and closing phases, as well as a decrease in the time period of the closed phase. The proposed model is validated by comparing its results with the low-dimensional mucosal surface wave propagation model.
Rocznik
Strony
15--27
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
  • Bahauddin Zakariya University Center for Advance Studies in Pure and Applied Mathematics Bosan Road, 60800, Multan, Pakistan, tahmush@hotmail.com
Bibliografia
  • 1. Avanzini F., Alku P., Karjalainen M. (2001), One-delayed-mass model for efficient synthesis of glottal flow, Proc. of Eurospeech Conf., pp. 51-54.
  • 2. Deverge M., Pelorson X., Vilain C.E., Lagre'e P.-Y., Chentouf F., Willems J.F.H., Hirschberg A. (2003), Influence of collision on the flow through in-vitro rigid models of the vocal folds, Journal of the Acoustical Society of America, 114, 3354-3362.
  • 3. Drioli C. (2002), A flow waveform adaptive mechanical glottal model, Speech, Music and Hearing Quarterly Progress and Status Report, 43, 69-79.
  • 4. Flanagan J.L., Landgraf L.L. (1968), Self-oscillating source for vocal tract synthesizers, IEEE Transactions on Audio and Electroacoustics, 16, 57-64.
  • 5. Hirano M. (1974), Morphological structure of the vocal cord as a vibrator and its variations, Folia Phoniatrica, 26, 89-94.
  • 6. Ishizaka K., Flanagan J.L. (1972), Synthesis of voiced sounds from a two mass model of the vocal cords, Bell System Technical Journal, 51, 1233-1268.
  • 7. Ishizaka K., Flanagan J.L. (1977), Acoustic properties of longitudinal displacement in vocal cord vibration, Bell System Technical Journal, 56, 889-918.
  • 8. Ishizaka K., Matsudaira M. (1972), Fluid mechanical considerations of vocal cord vibration, SCRL-Monograph, Speech Communication Research Laboratory, Santa Barbara, Calif.
  • 9. Koizumi T., Taniguchi S., Hiromitsu S. (1987), Two-mass models of the vocal cords for natural sounding voice synthesis, Journal of the Acoustical Society of America, 82, 1179-1192.
  • 10. Liljencrants J. (1991), A translating and rotating mass model of the vocal folds, Speech Transmission Laboratory-Quarterly Progress and Status Report, 1-18.
  • 11. Lous N.J.C., Hofmans G.C.J., Veldhuis R.N.J., Hirschberg A. (1998), A symmetrical two-mass vocal-fold model coupled to vocal tract and trachea, with application to prosthesis design, Acta Acustica (united with Acustica), 84, 1135-1150.
  • 12. Pelorson X., Hirschberg A., van Hassel R.R., Wijnands A.P.J. (1994), Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model, Journal of the Acoustical Society of America, 96, 3416-3431.
  • 13. Scherer R., Titze I.R. (1983), Pressure flow relationships in a model of the laryngeal airway with a diverging glottis, [in:] Vocal Fold Physiology: Current Research and Clinical Issues, D. Bless and J. Abbs [Eds.], pp. 179-193, College Hill, San Diego.
  • 14. Sondhi M. (2002), Articulatory modeling: a possible role in concatenative text-to-speech synthesis, Proc. 2002 IEEE Workshop on Speech Synthesis, S. Monica (CA), 73-78.
  • 15. Story B.H., Titze I.R. (1995), Voice simulation with a body-cover mode of the vocal folds, Journal of the Acoustical Society of America, 97, 1249-1260.
  • 16. Titze I.R. (1973), The human vocal cords: A mathematical model, part I, Phonetica, 28, 129-170.
  • 17. Titze I.R. (1988), The physics of small amplitude oscillations of the vocal folds, Journal of the Acoustical Society of America, 83, 1536-1552.
  • 18. Vilain C.E., Pelorson X., Fraysse C., Deverge M., Hirschberg A., Willems J.F.H. (2004), Experimental validation of a quasi-steady theory for the flow through the glottis, Journal of Sound and Vibration, 276, 475-490.
  • 19. de Vries M.P., Schutte H.K., Veldman A.E.P., Verkerke G.J. (2002), Glottal flow through a two-mass model: Comparison of Navier-Stokes solutions with simplified models, Journal of the Acoustical Society of America, 111, 1847-1853.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0020-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.