PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustical Spectroscopy of Carbohydrate Aqueous Solutions: Saccharides; Alkyl Glycosides; Cyclodextrins. Part II. Association and Complexation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results from broadband acoustical spectroscopy for aqueous solutions of mono- and disaccharides with salts added, of various alkyl glycosides, and of α-cyclodextrin with n-octyl-β-D-glucopyranoside added are briefly summarized in view of their relevance in the study of molecular association and complexation processes. Mono- and tridentate complexes of alkali earth ions with saccharides are discussed as well as the monomer exchange between micellar structures and the suspending phase in the alkyl glycoside surfactant solutions. Particular attention is given to the behaviour at solute concentrations close to the critical micelle concentration or aggregate concentration, respectively. Also described is the competition between inclusion complex formation and self-aggregation in solutions containing cyclodextrin and alkyl glycoside surfactant.
Rocznik
Strony
739--762
Opis fizyczny
Bibliogr. 81 poz., wykr.
Twórcy
autor
  • Georg-August-University Goettingen Drittes Physikalisches Institut Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
Bibliografia
  • 1. Adair D.A.W., Reinsborough V.C., Trenholm H.M., Valleau J.P. (1976), Chemical relaxations in micellar solutions by ultrasonic spectroscopy. II. Sodium heptylsulfate and hexylammonium chloride solutions, Can. J. Chem., 54, 1162-1167.
  • 2. Angyal S.J. (1980), Sugar-cation-complexes - structure and applications, Chem. Soc. Rev., 9, 415-428.
  • 3. Angyal S.J. (1989), Complexes of metal cations with carbohydrates in solution, Adv. Carbohydr. Chem. Biochem., 47, 1-43.
  • 4. Aniansson E.A.G., Wall S.N. (1974), On the kinetics of step-wise micelle association, J. Phys. Chem., 78, 1024-1030.
  • 5. Aniansson E.A.G. (1978), Theory of micelle formation kinetics, Ber. Bunsenges. Phys.Chem., 83, 981-988.
  • 6. Aniansson E.A.G. (1985), The mean lifetime of a micelle, Prog. Colloid Polym. Sci., 70, 2-5.
  • 7. Aoudia M., Zana R. (1998), Aggregation behavior of sugar surfactants in aqueous solutions: effects of temperature and the addition of nonionic polymers, J. Colloid Interface Sci., 206, 158-167.
  • 8. Bae J.-R., Lee C.W. (2009), Low-frequency ultrasonic relaxation of β-cyclodextrin and adenosine 5'-monophosphate in aqueous solution, Bull. Korean Chem. Soc., 30, 145-148.
  • 9. Balcerzak A., Płowiec R., Kiełczynski P., Juszkiewicz A. (2002), Absorption of ultrasonic waves in aqueous binary mixtures of α-cyclodextrin and some amphiphilic substances, Mol. Quantum Acoust., 23, 15-25.
  • 10. Balcerzak A. (2008), Ultrasonic measurements of aqueous solutions of β-cyclodextrin with alkyl pyridinium bromides, Archives of Acoustics, 33, 4, 627-641.
  • 11. Baucke E., Behrends R., Fuchs K., Hagen R., Kaatze U. (2004a), Kinetics of Ca2+ complexation with some carbohydrates in aqueous solutions, J. Chem. Phys., 120, 8118-8124.
  • 12. Baucke E., Behrends R., Kaatze U. (2004b), Rapidly fluctuating ion complexes in aqueous soulutions of 2:1 valent salts, Chem. Phys. Lett., 384, 224-228.
  • 13. Bogusz S., Venable R.M., Pastor R.W. (2000), Molecular dynamics simulation of octyl glycoside micelles: Structural properties, J. Phys. Chem. B, 104, 5462-5470.
  • 14. Bonicelli M.G., Ceccaroni G.F., La Mesa C. (1998), Lyotropic and thermotropic behavior of alkylglycosides and related compounds, Colloid Polym. Sci., 276, 109-116.
  • 15. Bonicontro A., Briganti G., D'Aprano A., La Mesa C., Sesta B. (1996), Dielectric behavior of octyl β-D-glucopyranoside micelles in water and in water-glycine solutions, Langmuir, 12, 3206-3210.
  • 16. Cabaleiro-Lago C., García-Río L., Hervés P., Mejuto J.C., Pérez-Juste J. (2006), In search of fully uncomplexed cyclodextrin in the presence of micellar aggregates, J. Phys. Chem. B, 110, 15831-15838.
  • 17. Cowman M., Eggers F., Eyring E.M., Horoszewski D., Kaatze U., Kreitner R., Petrucci S., Klöppel-Riech M., Stenger J. (1999), Microsecond to subnanosecond molecular relaxation dynamics of the interaction of Ca2+ with some carbohydrates in aqueous solution, J. Phys. Chem. B, 103, 239-242.
  • 18. Cunha-Silva L., Teixeira-Dias J.J.C. (2002), Aqueous solution inclusion of the nonionic surfactant C12E4 in β-cyclodextrin: implications of micellization in stoichiometry determination and model calculations, J. Inclusion Phenom. Macrocycl. Chem., 43, 127-131.
  • 19. Debye P. (1942), Relaxation rates in ionic solutions, J. Electrochem. Soc., 82, 265-272.
  • 20. Eigen M. (1954), Über den Zustand schnell verlaufender Ionenreaktionen in wässriger Lösung [in German], Z. Phys. Chem. N.F., 1, 176-183.
  • 21. Eigen M., Winkler R. (1970), Alkali-ion carriers: dynamics and selectivity [in:] Neuroscience: second study program, F.O. Schmitt [Ed.], Rockefeller University Press, New York, 685-696.
  • 22. Frindi M., Michels B., Zana R. (1992), Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with short alkyl chain. 2. C6E3;C6E5;C8E4, and C8E8, J. Phys. Chem., 96, 6095-6102.
  • 23. Frindi M., Michels B., Zana R. (1994a), Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of amphoteric surfactants, J. Phys. Chem., 98, 6607-6611.
  • 24. Frindi M., Michels B., Levy H., Zana R. (1994b), Alkandiyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 4. Ultrasonic absorption studies of amphiphile exchange between micelles and bulk phase in aqueous micellar solutions, Langmuir, 10, 1140-1145.
  • 25. Fuchs K., Kaatze U. (2002), Dielectric spectra of mono- and disaccharide aqueous solutions, J. Chem. Phys., 116, 7137-7144.
  • 26. Fukahori T., Nishikawa S., Yamaguchi K. (2004a), Kinetics on isomeric alcohols recognition by α- and β-cyclodextrins using ultrasonic relaxation method, Bull. Chem. Soc. Japan, 77, 2193-2198.
  • 27. Fukahori T., Nishikawa S., Yamaguchi K. (2004b), Ultrasonic relaxation due to inclusion complex of amino acid by β-cyclodextrin in aqueous solution, J. Acoust. Soc. Am., 115, 2325-2330.
  • 28. Fukahori T., Kondo M., Nishikawa S. (2006), Dynamic study of interaction between β-cyclodextrin and aspirin by the ultrasonic relaxation method, J. Phys. Chem. B, 110, 4487-4491.
  • 29. Fuoss R.M. (1958), Ionic Association. III. The equilibrium between ion pairs and free ions, J. Am. Chem. Soc., 80, 5059-5061.
  • 30. Gallina M.E., Comez L., Morresi A., Paolantoni M., Perticaroli S., Sassi P., Firetto D. (2010), Rotational dynamics of trehalose in aqueous solutions studied by depolarized light scattering, J. Chem. Phys., 132, 214508-1-214508-6.
  • 31. Hagen R. (1998), Breitbandige Ultraschallabsorptionsspektroskopie an wäßrigen n-Hexylammoniumchlorid-Lösungen im Frequenzbereich von 180 kHz bis 4.6 GHz [in German], diploma thesis, Georg-August-Universität, Göttingen.
  • 32. Hall D.G., Wyn-Jones E. (1986), Chemical relaxation spectrometry in aqueous surfactant solutions, J. Mol. Liq., 32, 63-82.
  • 33. Haller J., Kaatze U. (2008), Complexation versus micelle formation: α-cyclodextrin + n-decyltrimethylammonium bromide aqueous solutions, Chem. Phys. Lett., 463, 94-98.
  • 34. Haller J., Kaatze U. (2009a), Monomer exchange and rotational isomerization of alkyl monoglycosides in water, J. Phys. Chem. B, 113, 12283-12292.
  • 35. Haller J., Kaatze U. (2009b), Ultrasonic spectrometry of aqueous solutions of alkyl maltosides: kinetics of micelle formation and head-group isomerization, Chem. Phys. Chem., 10, 2703-2710.
  • 36. Haller J., Kaatze U. (2009c), Octylglucopyranoside and cyclodextrin in water: selfaggregation and complex formation, J. Phys. Chem. B, 113, 1940-1947.
  • 37. Haller J., Miecznik P., Kaatze U. (2006), Ultrasonic attenuation spectrometry study of α-cyclodextrin + KI complexation in water, Chem. Phys. Lett., 429, 97-102.
  • 38. Hazekamp A., Verpoorte R. (2006), Structure elucidation of the tetrahydrocannabinol complex with randomly methylated β-cyclodextrin, Eur. J. Pharmaceut. Sci., 29, 340-347.
  • 39. Häntschel D., Schulte J., Enders S., Quitsch K. (1999), Thermotropic and lyotropic properties of n-alkyl-β-D-glucopyranoside surfactants, Phys. Chem. Chem. Phys., 1, 895-904.
  • 40. Junquera E., Tardajos G., Aicart E. (1993), Effect of the presence of β-cyclodextrin on the micellation process of sodium dodecyl sulfate or sodium perfluorooctanoate in water, Langmuir, 9, 1213-1219.
  • 41. Jutunen J., Jarvinen T., Niemi R. (2005), In-vitro corneal permeation of cannabinoids and their water-soluble phosphate ester, J. Pharm. Pharmacol., 57, 1153-1157.
  • 42. Kaatze U. (2010), Acoustical spectroscopy of carbohydrate aqueous solutions: saccharides; alkyl glycosides; cyclodextrins. Part I. Conformer variations, Archives of Acoustics, 35, 4, 715-738.
  • 43. Kahlweit M., Teubner M. (1980), On the kinetics of micellation in aqueous solutions, Adv. Colloid Interface Sci., 13, 1-64.
  • 44. Kato S., Harada S., Sahara H. (1995), Ultrasonic relaxation and volumetric studies of the micelle/monomer exchange process in aqueous solutions of nonionic surfactants C7E4;C8E4, and C8E5, J. Phys. Chem., 99, 12570-12575.
  • 45. Lee S.L., Debenedetti P.G., Errington J.R. (2005), A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions, J. Chem. Phys., 122, 204511-1-204511-10.
  • 46. Lelong G., Howells W.S., Brady J.W., Talón C., Price D.L., Saboungi M.-L. (2009), Translational and rotational dynamics of monosaccharide solutions, J. Phys. Chem. B, 113, 13079-13085.
  • 47. Liu L., Guo Q.-X. (2002), The driving forces in the inclusion complexation of cyclodextrins, J. Incl. Phenom., 42, 1-14.
  • 48. López O., Cócera M., Parra J.L., De La Maza A. (2001), Influence of the hydrophobic tail of alkyl glucosides on their ability to solubilize stratum corneum lipid liposomes, Colloid Polym. Sci., 279, 909-915.
  • 49. Lorber B., Bishop J.B., DeLucas L.J. (1990), Purification of octyl-β-d-glycopyranoside and re-estimation of its micellar size, Biochim. Biophys. Acta-Biomembranes, 1023, 254-265.
  • 50. Matsuoka T., Okada T., Murai K., Koda S., Nomura H. (2002), Dynamics and hydration of trehalose and maltose in concentrated solutions, J. Mol. Liq., 98-99, 319-329.
  • 51. Minns J.W., Khan A. (2002), α-Cyclodextrin-I_3 host-guest complex in aqueous solution: theoretical and experimental studies, J. Phys. Chem. A, 106, 6421-6425.
  • 52. Nickel D., Nitsch C., Kurzendörfer P., von Rybinski W. (1993), Interfacial properties of surfactant mixtures with alkyl polyglycosides, Prog. Colloid. Polym. Sci., 89, 249-252.
  • 53. Nilsson F., Söderman O., Johansson I. (1996), Physical-chemical properties of the noctyl β-D-glucoside/water system. A phase diagram, self diffusion NMR, and SAXS study, Langmuir, 12, 902-908.
  • 54. Nishikawa S., Ugawa T., Fukahori T. (2001), Molecular recognition kinetics of β- cyclodextrin for several alcohols by ultrasonic relaxation method, J. Phys. Chem. B, 105, 7594-7597.
  • 55. Nishikawa S., Fukahori T., Ishikawa K. (2002), Ultrasonic relaxations in aqueous solutions of propionic acid in the presence and absence of β-cyclodextrin, J. Phys. Chem. A, 106, 3029-3033.
  • 56. Nomura, H., Koda, S., Matsuoka T., Hiyama T., Shibata R., Kato S. (2000), Study of salt effects on micelle - monomer exchange process of octyl-, decyl-, and dodecyltrimethylammonium bromide in aqueous solutions by means of ultrasonic relaxation spectroscopy, J. Colloid Interface Sci., 230, 22-28.
  • 57. Panneer Selvam A., Geetha D. (2008), Ultrasonic studies on Lamivudine: β-cyclodextrin and polymer inclusion complexes, Pak. J. Biol. Sci., 11, 656-659.
  • 58. Papaioannou J.C., Ghikas T.C. (2003), Dielectric relaxation of α-cyclodextrinpolyiodide complexes (α-cyclodextrin)2¢BaI 2¢I 2¢8H2O and (α-cyclodextrin)2¢KI 3¢I 2¢8H2O, Mol. Phys., 16, 2601-2608.
  • 59. Piñeiro Á. et al. (2007), On the characterization of host - guest complexes: surface tension, calorimetry, and molecular dynamics of cyclodextrins with a non-ionic surfactant, J. Phys. Chem. B, 111, 4383-4392.
  • 60. Platz G., Pölike J., Thunig C. (1995), Phase behavior, lyotropic phases, and flow properties of alkyl glycosides in aqueous solution, Langmuir, 11, 4250-4255.
  • 61. Polacek R. (2003), Breitbandige Ultraschallabsorptionsspektroskopie an wäßrigen ionischen Tensid-Lösungen im Frequenzbereich von 100 kHz bis 2 GHz [in German], dissertation, Georg-August-Universität, Göttingen.
  • 62. Polacek R., Kaatze U. (2007), Monomer exchange kinetics, radial diffusion, and hydrocarbon chain isomerization of sodium dodecylsulfate micelles in water, J. Phys. Chem. B, 111, 1625-1631.
  • 63. Polacek R., Stenger J., Kaatze U. (2002), Chair-chair conformational flexibility, pseudorotation, and exocyclic group isomerization of monosaccharides in water, J. Chem. Phys., 116, 2973-2982.
  • 64. Pomata M.H.H., Sonoda M.T., Skaf M.S., Elola M.D. (2009), Anomalous dynamics of hydration water in carbohydrate solutions, J. Phys. Chem. B, 113, 12999-13006.
  • 65. Products and Services Catalog, Antrace Inc., Maumee, OH, USA.
  • 66. Reinsborough V.C., Stephenson V.C. (2004), Inclusion complexation involving sugarcontaining species: β-cyclodextrin and sugar surfactants, Can. J. Chem., 82, 45-49.
  • 67. Rongére P., Morel-Desrosiers N., Morel J.-P. (1995), Interactions between cations and sugars. Part 8. Gibbs energies, enthalpies and entropies of assiciation of divalent and trivalent metal cations with xylitol and glucitol in water at 298.15 K, J. Chem. Soc. Faraday Trans., 91, 2771-2777.
  • 68. Sajadi M., Ajaj Y., Ioffe I., Weingärtner H., Ernsting N.P. (2010), THz absorption spectroscopy of a liquid via a polarity probe. A case study of trehalose/water mixtures, Angew. Chem. Int. Ed., 49, 454-457.
  • 69. Schulte J., Enders S., Quitsch K. (1999), Rheological studies of aqueous alkylpolyglucoside surfactant solutions, Colloid Polym. Sci., 277, 827-836.
  • 70. Shinoda K., Yamaguchi T., Hori R. (1961), The surface tension and the critical micelle concentration in aqueous solution of ¯-D-alkyl glucosides and their mixtures, Bull. Chem. Soc. Jpn., 34, 237-241.
  • 71. Telgmann T., Kaatze U. (1997a), On the kinetics of the formation of small micelles. 2. Extension of the model of stepwise association, J. Phys. Chem. B, 101, 7766-7772.
  • 72. Telgmann T., Kaatze U. (1997b), On the kinetics of the formation of small micelles. 1. Broadband ultrasonic absorption spectrometry, J. Phys. Chem. B, 101, 7758-7765.
  • 73. Telgmann T., Kaatze U. (2000a), Monomer exchange and concentration fluctuations of micelles. Broad-band ultrasonic spectrometry of the system triethylene glycol monohexyl ether/water, J. Phys. Chem. A, 104, 1085-1094.
  • 74. Telgmann T., Kaatze U. (2000b), Monomer exchange and concentration fluctuations in polyethylene glycol monoalkyl ether/water mixtures. Dependence upon nonionic surfactant composition, J. Phys. Chem. A, 104, 4846-4856.
  • 75. Teubner M. (1979), Theory of ultrasonic absorption in aqueous solutions, J. Phys. Chem., 83, 2917-2920.
  • 76. Ugawa T., Nishikawa S. (2001), Kinetic study for molecular recognition of amino acid by cyclodextrin in aqueous solution, J. Phys. Chem. A, 105, 4248-4251.
  • 77. Upadhya P.C., Shen Y.C., Davies A.G., Linfield E.H. (2003), Terahertz time-domain spectroscopy of glucose and uric acid, J. Biol. Phys., 29, 117-121.
  • 78. Valente A.J.M., Nilsson M., Söderman O. (2005), Interactions between n-octyl and nnonyl β-D-glucosides and α- and β-cyclodextrins as seen by self-diffusion NMR, J. Colloid Interface Sci., 281, 218-224.
  • 79. Weingärtner H., Knocks A., Boresch S., Höchtl P., Steinhauser O. (2001), Dielectric spectroscopy in aqueous solutions of oligosaccharides: experiment meets simulation, J. Chem Phys., 115, 1463-1472.
  • 80. Yamaguchi K., Fukahori T., Nishikawa S. (2005), Dynamic interaction between alkylammonium ions and β-cyclodextrin by means of ultrasonic relaxation, J. Phys. Chem. A, 109, 40-43.
  • 81. Yu Y., Chipot C., Cai W., Shao X. (2006), Molecular dynamics study of the inclusion of cholesterol into cyclodextrins, J. Phys. Chem. B, 110, 6372-6378
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.